Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/1347
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jocić, Danko | en_US |
dc.date.accessioned | 2024-09-27T15:42:43Z | - |
dc.date.available | 2024-09-27T15:42:43Z | - |
dc.date.issued | 2024 | - |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/1347 | - |
dc.description | Jocić DR. Norm Estimates for Remainders of Noncommutative Taylor Approximations for Laplace Transformers Defined by Hyperaccretive Operators. Mathematics. 2024; 12(19):2986. <a href="https://doi.org/10.3390/math12192986">https://doi.org/10.3390/math12192986</a> | en_US |
dc.description.abstract | Let H be a separable complex Hilbert space, B(H) the algebra of bounded linear operators on H, μ a finite Borel measure on R+ with the finite (n + 1)-th moment, f (z) := R R+ e−tzdμ(t) for all ℜz ⩾ 0, CΨ(H), and || · ||Ψ the ideal of compact operators and the norm associated to a symmetrically norming function Ψ, respectively. If A, D ∈ B(H) are accretive, then the Laplace transformer on B(H), X 7→ R R+ e−tAXe−tDdμ(t) is well defined for any X ∈ B(H) as is the newly introduced Taylor remainder transformer Rn( f ; D, A)X := f (A)X − nΣ k=0 1 k! kΣ i=0 (−1)i(ki )Ak−iXDi f (k)(D). If A, D∗ are also (n + 1)-accretive, Σn+1 k=0 (−1)k(n+1 k )An+1−kXDk ∈ CΨ(H) and || · ||Ψ is Q∗ norm, then || · ||Ψ norm estimates for Σn+1 k=0 (n+1 k )AkAn+1−k 1 2Rn( f ; D, A)X Σn+1 k=0 (n+1 k )Dn+1−kD∗k 1 2 are obtained as the spacial cases of the presented estimates for (also newly introduced) Taylor remainder transformers related to a pair of Laplace transformers, defined by a subclass of accretive operators. | en_US |
dc.language.iso | en | en_US |
dc.publisher | MDPI | en_US |
dc.relation.ispartof | Mathematics | en_US |
dc.rights | Attribution 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/us/ | * |
dc.subject | Norm inequalities | en_US |
dc.subject | Q and Q-norms | en_US |
dc.subject | n-(hyper)accretive operators | en_US |
dc.title | Norm Estimates for Remainders of Noncommutative Taylor Approximations for Laplace Transformers Defined by Hyperaccretive Operators | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.3390/math12192986 | - |
dc.contributor.affiliation | Real and Functional Analysis | en_US |
dc.relation.issn | 2227-7390 | en_US |
dc.description.rank | M21a | en_US |
dc.relation.firstpage | Article no. 2986 | en_US |
dc.relation.volume | 12 | en_US |
dc.relation.issue | 19 | en_US |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.openairetype | Article | - |
item.grantfulltext | open | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Real and Functional Analysis | - |
crisitem.author.orcid | 0000-0003-2084-7180 | - |
Appears in Collections: | Research outputs |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Jocic -mathematics-2024.pdf | 337.43 kB | Adobe PDF | View/Open |
Page view(s)
11
checked on Nov 14, 2024
Download(s)
1
checked on Nov 14, 2024
Google ScholarTM
Check
Altmetric
Altmetric
This item is licensed under a Creative Commons License