Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1347
DC FieldValueLanguage
dc.contributor.authorJocić, Dankoen_US
dc.date.accessioned2024-09-27T15:42:43Z-
dc.date.available2024-09-27T15:42:43Z-
dc.date.issued2024-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1347-
dc.descriptionJocić DR. Norm Estimates for Remainders of Noncommutative Taylor Approximations for Laplace Transformers Defined by Hyperaccretive Operators. Mathematics. 2024; 12(19):2986. <a href="https://doi.org/10.3390/math12192986">https://doi.org/10.3390/math12192986</a>en_US
dc.description.abstractLet H be a separable complex Hilbert space, B(H) the algebra of bounded linear operators on H, μ a finite Borel measure on R+ with the finite (n + 1)-th moment, f (z) := R R+ e−tzdμ(t) for all ℜz ⩾ 0, CΨ(H), and || · ||Ψ the ideal of compact operators and the norm associated to a symmetrically norming function Ψ, respectively. If A, D ∈ B(H) are accretive, then the Laplace transformer on B(H), X 7→ R R+ e−tAXe−tDdμ(t) is well defined for any X ∈ B(H) as is the newly introduced Taylor remainder transformer Rn( f ; D, A)X := f (A)X − nΣ k=0 1 k! kΣ i=0 (−1)i(ki )Ak−iXDi f (k)(D). If A, D∗ are also (n + 1)-accretive, Σn+1 k=0 (−1)k(n+1 k )An+1−kXDk ∈ CΨ(H) and || · ||Ψ is Q∗ norm, then || · ||Ψ norm estimates for 􀀀 Σn+1 k=0 (n+1 k )AkAn+1−k 1 2Rn( f ; D, A)X 􀀀 Σn+1 k=0 (n+1 k )Dn+1−kD∗k 1 2 are obtained as the spacial cases of the presented estimates for (also newly introduced) Taylor remainder transformers related to a pair of Laplace transformers, defined by a subclass of accretive operators.en_US
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.ispartofMathematicsen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.subjectNorm inequalitiesen_US
dc.subjectQ and Q-normsen_US
dc.subjectn-(hyper)accretive operatorsen_US
dc.titleNorm Estimates for Remainders of Noncommutative Taylor Approximations for Laplace Transformers Defined by Hyperaccretive Operatorsen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/math12192986-
dc.contributor.affiliationReal and Functional Analysisen_US
dc.relation.issn2227-7390en_US
dc.description.rankM21aen_US
dc.relation.firstpageArticle no. 2986en_US
dc.relation.volume12en_US
dc.relation.issue19en_US
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeArticle-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptReal and Functional Analysis-
crisitem.author.orcid0000-0003-2084-7180-
Appears in Collections:Research outputs
Files in This Item:
File Description SizeFormat
Jocic -mathematics-2024.pdf337.43 kBAdobe PDF
View/Open
Show simple item record

Page view(s)

11
checked on Nov 14, 2024

Download(s)

1
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons