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Abstract: Let H be a separable complex Hilbert space, B(H) the algebra of bounded linear operators
on H, µ a finite Borel measure on R+ with the finite (n + 1)-th moment, f (z) :=

∫
R+

e−tzdµ(t) for all
ℜz ⩾ 0, CΨ(H), and || · ||Ψ the ideal of compact operators and the norm associated to a symmetrically
norming function Ψ, respectively. If A, D ∈ B(H) are accretive, then the Laplace transformer on
B(H), X 7→

∫
R+

e−tAXe−tDdµ(t) is well defined for any X ∈ B(H) as is the newly introduced Taylor

remainder transformer Rn( f ; D, A)X := f (A)X −
n
∑

k=0

1
k!

k
∑

i=0
(−1)i(k

i)Ak−iXDi f (k)(D). If A, D∗ are

also (n + 1)-accretive, ∑n+1
k=0 (−1)k(n+1

k )An+1−kXDk ∈ CΨ(H) and || · ||Ψ is Q∗ norm, then || · ||Ψ
norm estimates for

(
∑n+1

k=0 (n+1
k )Ak An+1−k)1

2Rn( f ; D, A)X
(
∑n+1

k=0 (n+1
k )Dn+1−kD∗k)1

2 are obtained as
the spacial cases of the presented estimates for (also newly introduced) Taylor remainder transformers
related to a pair of Laplace transformers, defined by a subclass of accretive operators.

Keywords: norm inequalities; Q and Q-norms; n-(hyper)accretive operators
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1. Introduction

The widely known type of the remainder of Taylor approximations

Rp(φ; H◦, V)
def
= φ(H◦ + V)−

p

∑
k=0

1
k!

dk

(dx)k φ(H◦ + xV)|x=0 (1)

for p ∈ N, V = V∗ ∈ Cp(H), self-adjoint H◦ acting in a Hilbert space H and a wide class of
functions φ was (among others) considered by Koplienko in [1], Neindhardt in [2], Dostanić
in [3], Peller in [4], and Skripka in [5], where the sufficient conditions for the existence
of higher-order Lifshits–Krein spectral shift functions, the trace norm estimate, and the
corresponding trace formula for Rp(φ; H◦, V) were presented. Further generalizations and
other variants of trace formulas for the remainders of Taylor approximations can be found
in [6–10] and the references therein. For the use of multilinear operator integrals in the
representation of the remainders of Taylor approximations, see [11,12].

Operator-valued Laplace transforms and Laplace transformers in norm ideals of com-
pact operators were introduced in [13]. They soon proved useful in deriving the extension
of the arithmetic–geometric (A-G) mean, Young’s norm inequalities to accretive operators
in [14], and higher-order A-G mean inequalities for hyperaccretive subnormal operators
in [15]. It turned out that the hyperaccretivity plays a natural and crucial role in those
inequalities. Furthermore, the iterated perturbation norm inequalities for Laplace trans-
formers induced by accretive operator families were studied in [16], where the special cases
of (h4), (h5) of Ineq. (4.4); (h7) and (h8) of Ineq. (4.5); and (h10)–(h12) of Ineq. (4.6) of the
noncommutative Pick–Julia theorems for generalized derivations in [17] were generalized
to perturbations of Laplace transformers. See [16] (Th. 3.8, Th. 3.1, Th. 3.3).
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The motivation for this paper is the introduction of the two new and natural (al-
ternative) noncommutative Tailor remainders, together with the demonstration of their
suitability and usefulness in answering some classical problems in operator theory and
matrix analysis. Here, we focus on the establishing norm estimates for those new types of
remainders of Taylor approximations introduced by Definition 3, which are not necessarily
the trace class operators. In addition to the generalized derivation norm inequalities for
operators, the results obtained in this paper also include norm inequalities for perturbations
of Laplace transformers, which further develop the case n := 1 of the results presented
in [16]. The most important tools for obtaining these results are the Cauchy–Schwarz norm
Ineq. (23) in [18] (Th. 3.2.), Ineq. (30) in [19] (Th. 3.1 (c)), the first inequality in (32) in [19]
(Th. 3.1 (d)) and Ineq. (32) in [19] (Th. 3.1 (e)), which were previously used to derive the
results presented in [13–16]. We therefore strongly advise interested readers to inform
themselves about these inequalities before reading the "Main results" section in this article.

The class of n-hypercontractions was first introduced by Agler in [20,21]. There is a
strong parallelism between classes of hyperaccretive and hypercontractive operators, and
the Cayley transform on accretive and contractive operators represents a very important
tool to correlate their properties; for examples, see [15] (Lemma 3.4(d)). For any n ∈ N,
let An(D) be the Hilbert space of analytic functions f : D → C : z 7→ ∑∞

k=0 ckzk, satisfying

|| f ||2An

def
=∑∞

k=0 (
n+k−1

n−1 )
−1|ck|2<+∞. The backward shifts on the Bergman spaces are not only

the best known examples of n-hypercontractive operators but also model operators for
n-hyperacontractive operators such that they are of paramount importance in the world of
operator-related function theory. For more about Bergman spaces, see [22].

2. Notation

In this paper, we denote by B(H) the space of all bounded linear operators on a
separable, complex Hilbert space H. For a symmetrically norming (s.n.) function Φ, defined
on sequences of complex numbers, there is the corresponding symmetric or a unitary
invariant (u.i.) norm ||·||Φ on operators, defined on the naturally associated norm ideal
CΦ (H ) ⊂ C∞(H ), where C∞(H ) denotes the ideal of compact operators on H. Thus,
the Schatten–von Neumann trace ideals Cp(H) for 1 ⩽ p ⩽ +∞ are associated to ℓp s.n.
functions, given by ℓp((λn)∞

n=1
) def
= p

√
∑∞

n=1 |λn|p. Schatten p-norms are classical examples
of (degree) p-modified norms. In fact, any u.i. norm ||·||Φ can be p-modified for any p > 0
by setting ||A||Φ(p)

def
= || |A|p||1/p

Φ for all A ∈ C∞(H), such that |A|p ∈ CΦ(H). From now on,
we refer to s.n. function Φ(p) as a p-modification of the s.n. function Φ. For the elementary
proof of the triangle inequality for p ⩾ 1 and other properties of those norms, including the
Hölder inequality, see the preliminary section in [23] or [24] (cor. IV.2.6, ex. IV.2.7-8). Hence,
Cp(H) = Cℓp(H), and its norm is simply denoted by ||·||p.

The following useful monotonicity property for u.i. norms, which states that

||AXB||Φ ⩽ ||CXD||Φ, (2)

whenever A∗A ⩽ C∗C and BB∗ ⩽ DD∗, will be needed later on. For the proof of (2) see [25]
(p. 62).

Also, for each s.n. function Φ, there is the adjoint s.n. function, which is denoted by Φ∗.
In order to obtain a more comprehensive insight into the theory of norm ideals, the

reader is referred to [24,26–28].
If (Ω,M, µ) is a space Ω with a measure µ on σ-algebra M, consisting of (measurable)

subsets of Ω, then we call a function A : Ω → B (H ) : t 7→ At (M) weakly∗ measurable if
t 7→⟨Atg,h⟩ is a (M) is measurable for all g, h ∈ H. If these functions are also [µ] integrable
on Ω, then A is called ([µ]) weakly∗ integrable on Ω, and in this case for all δ ∈ M, there is
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the unique (known as Gel’fand or weak∗ integral, which is denoted by w∗∫
δ At dµ(t)) operator

in B(H) that satisfies (amongst others)〈 w∗∫
δ

At dµ(t)g, h
〉

=
∫

δ
⟨Atg, h⟩ dµ(t) for all g, h ∈ H.

For a more detailed insight into the weak∗-integrability of operator valued (o.v.)
functions, the reader is referred to [29] (p. 53), [18] (p. 320) and [30] (lemma 1.2). Let also
L2

G

(
Ω,µ,B(H)

)
denote the space of all weakly∗ measurable functions A : Ω → B(H) such

that
∫

Ω ||Ath||2 dµ(t) < +∞ for any h ∈ H, which we call the space of ([µ]) square integrable
(s.i.) functions. Note that o.v. function t 7→ A∗

t At are Gel’fand integrable if and only if
A ∈ L2

G

(
Ω,µ,B(H)

)
as it was shown in [18] (ex. 2).

From this point on, we will use the simplified notation
∫

δAt dµ(t) instead of w∗∫
δ At dµ(t).

For a family {At}t∈Ω of mutually commutative normal operators, use the acronym: m.c.n.o.
(family). For A, B ∈ B(H), the bilateral multiplier A ⊗ B is defined by A ⊗ B : B(H) →
B(H) : X 7→ AXB and the generalized derivation ∆A,B by ∆A,B

def
= A⊗I + I⊗B. If A, B : Ω →

B(H) are weak∗-measurable such that t 7→ AtXBt is weak∗-integrable on Ω for all X ∈ CΦ(H),
then

∫
Ω At⊗Bt dµ(t) : CΦ(H) → B(H) : X 7→

∫
Ω AtXBt dµ(t) is called the inner product type

(i.p.t.) transformer on CΦ(H) if
∫

Ω AtXBt dµ(t) ∈ CΦ(H) for all X ∈ CΦ(H). For the existence
and different types of convergence for weak∗-integrals, as well as for the boundedness of
i.p.t. transformers, the reader is referred to [18] (lemma 3.1, th. 3.2, th. 3.3, th. 3.4).

The concept of Gel’fand integrability for o.v. functions and the associated i.p.t. trans-
formers had proved to be very fruitful, and, in particular, has led to the emergence of a wide
range of quite new Cauchy–Schwarz operator and norm inequalities for i.p.t. transformers
in [18,19,31]. These inequalities have enabled (among other things) the spectral measures
free approach to double operator integrals (DOI), developed by Birman, Solomyak and their
collaborators, which has served as the main tool for perturbation and derivation inequalities
for functions of normal operators, mainly self-adjoint and unitary operators, as well as for
the treatment of new classes of operators, including N-hyperaccretive, N-hypercontractive,
quasinormal, hyponormal, subnormal, and operators with the contractive real part. The
results obtained are presented in [13–17,25,32–34] and other related papers.

Next, we recall the definitions of some important subclasses of bounded operators on
Hilbert spaces, which are discussed below.

Definition 1. For operators A ∈ B(H) and n, N ∈ N we say the following:
1. A is accretive if A∗+A ⩾ 0;
2. A is strictly (or uniformly) accretive if there is a constant c > 0, such that A∗+A ⩾ cI,

which will be denoted by A∗+A ≫ 0;
3. A is N-accretive if, and only if, ∑n

k=0
( N

k
)

A∗kAN−k ⩾ 0;
4. A is strictly (or uniformly) N-accretive if, and only if, ∑n

k=0
( N

k
)

A∗kAN−k ≫ 0, i.e., if

∑n
k=0

( N
k
)

A∗kAN−k⩾ cI for some c> 0;

5. A is N-semiaccretive if, and only if, ∑n
k=0

( N
k
)

A∗kAN−k semidefinite;

6. A is N-hyperaccretive if, and only if it is n-accretive for all 1 ⩽ n ⩽ N;

More about the importance of accretive operators in the study of the stability of
solutions of differential equations in Banach space can be seen in [35].

Throughout this paper, we use the conventions IΠ+
def
= C+

def
=

{
z ∈ C : ℜz def

= z+z̄
2 > 0

}
,

R+
def
= [0,+∞), as well as Z for the set of integers, N def

= Z∩ [1,+∞) and N◦
def
= Z∩ [0,+∞).

We must also emphasize that we always cite (address to) the unnumbered line in a
multiline formula as (to) a part of the following numbered one.
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3. Preliminaries and Preparatory Results
3.1. General Preliminaries

Definition 2. Let µ be a Borel measure on R+ and A, B, X ∈ B(H). If a function t 7→ e−tA is
Gel’fand [µ]-integrable on R+, then

L [µ](A)
def
=

∫
R+

e−tA dµ(t)

will denote the operator valued (o.v.) Laplace transform of µ (evaluated in A), and similarly, if the
function t 7→ e−tAXe−tB is Gel’fand [µ]-integrable on R+, then

L [µ]∆A,BX def
= L [µ](∆A,B)X def

= L [µ](A⊗I + I⊗B)X def
=

∫
R+

e−tAXe−tBdµ(t)

will denote the Laplace transformer of µ (in a generalized derivation A⊗I + I⊗B, evaluated in X).
In this case, we say that X in the domain of L [µ]∆A,B and we denote this by X∈DL [µ]∆A,B

.

Example 1. If A, B ∈ B(H) are accretive, X ∈ B(H), and µ is a finite Borel measure on R+, then
DL [µ]∆A,B

= B(H). Namely,∫
R+

e−tAe−tA∗
dµ(t) ⩽

∫
R+

I dµ(t) = µ(R+)I and
∫
R+

e−tB∗
e−tB dµ(t) ⩽ µ(R+)I,

so { e−tA∗ }t⩾0 and { e−tB }t⩾0 are [µ] s.i. families, so L [µ]∆A,BX =
∫
R+

e−tAXe−tB dµ(t)
is well defined and it satisfies ||L [µ]∆A,BX|| ⩽ µ(R+)||X|| based on the estimate (12) in [18]
(Lemma 3.1(a)).

Also, if N ∈ N, then for all X ∈ B(H)

1
(N−1)!

∫
R+

tN−1e−tA∆N
A,BXe−tBdt = X, if A or B is strictly accretive, and (3)

1
(N−1)!

∫
R+

tN−1e−tA∗
∆N

A∗,A(I)e
−tAdt = I −℧−

A∗,A(I)
def
= I − slim

t→+∞
e−tA∗

e−tA, (4)

if A is N-hyperaccretive. According to Formula (5) in [14] (Lemma 2.4) for all T ∈ R+

1
(N−1)!

∫
[0,T]

tN−1e−tA∆N
A,BXe−tBdt = X −

N−1

∑
n=0

Tn

n! e−TA∆n
A,BXe−TB, (5)

where slim T→+∞ Tne−TA = 0 or slim T→+∞ Tne−TB = 0, based on the estimate ||Tne−TAh||
⩽ Tne−

cT
2 ||e−T(A− c

2 I)h|| → 0 as T → +∞ if A is uniformly accretive satisfying A + A∗ ⩾ cI for
some c > 0. If B+ B∗ ⩾ cI, Formula (3) proves similarly.

Formula (4) was recently shown in [32] (Th. 2.4(7)).

Lemma 1. For all t, T ∈ R+ and A, B, C, D, X ∈ B(H) satisfying AC = CA and BD = DB

etAXetB− etCXetD =
∫
[0,t]

e(t−u)A+uC(AX+XB−CX−XD)euB+(t−u)D)du

=
∫
[0,1]

e(1−s)tA+stC(AX+XB−CX−XD)estB+(1−s)tDt ds, (6)∫
[0,T]

(
e−tAXe−tB− e−tCXe−tD)dµ(t)

=
∫
[0,T]

∫
[0,1]

e−(1−s)tA−stC(CX+XD−AX−XB)e−(1−s)tB−stDtds dµ(t). (7)

Moreover, if A, B, C−A and D−B are also accretive (as are C, D as well) and µ is a finite
Borel measure on R+, then
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L [µ]∆A∗,A(I)−L [µ]∆C∗,C(I)= slim
T→+∞

∫
[0,T]

∫
[0,1]

e−(1−s)tA∗−stC∗
(C∗+C−A∗−A)e−(1−s)tA−stCtds dµ(t)

=
∫
R+

∫
[0,1]

e−(1−s)tA∗−stC∗
(C∗+C−A∗−A)e−(1−s)tA−stCtdsdµ(t), (8)

L [µ]∆B,B∗(I)−L [µ]∆D,D∗(I) =
∫
R+

∫
[0,1]

e−(1−s)tB−stD(D∗+D−B∗−B)e−(1−s)tB∗−stD∗
tds dµ(t), (9)

L [µ]∆A,BX −L [µ]∆C,DX

= slim
T→+∞

∫
[0,T]

∫
[0,1]

e−(1−s)tA−stC(CX+XD−AX−XB)e−(1−s)tB−stDtds dµ(t). (10)

In this case, L [µ]∆A∗,A(I)−L [µ]∆C∗,C(I) ⩾ 0 and L [µ]∆B,B∗(I)−L [µ]∆D,D∗(I)⩾0, and both

families {
√

t
√

∆C∗−A∗,C−A(I)e
−(1−s)tA−stC}0⩽t, 0⩽s⩽1 and {

√
t
√

∆D∗−B∗,D−B(I)e−(1−s)tB−stD}0⩽t, 0⩽s⩽1 are
square integrable on R+×[0,1].

If additionally (A − C)X + X(B − D) ∈ C1(H), then

√
∆C∗−A∗,C−A(I)

(
L [µ](A⊗I+ I⊗B)X−L [µ](C⊗I+ I⊗D)X

)√
∆D−B,D∗−B∗(I)

=
∫
R+

∫
[0,t]

√
∆C∗−A∗,C−A(I)e−(t−s)A−sC((C − A)X+X(D − B)

)
e−(t−s)B−sD

√
∆D−B,D∗−B∗(I)ds dµ(t)

∈ C1(H). (11)

Moreover, if additionally
∫
R+

t dµ(t) < +∞, then(
L [µ](A⊗I+ I⊗B)X−L [µ](C⊗I+ I⊗D)X

)
=
∫
R+

∫
[0,t]

e−(t−s)A−sC((C − A)X+X(D − B)
)

e−(t−s)B−sDds dµ(t). (12)

Proof. The special case B := C := 0 and X := I of Formula (6) follows from

etA − etD =
(
etAe−tD − I

)
etD =

∫
[0,t]

d
du

(
euAe−uD − I

)
duetD (13)

=
∫
[0,t]

euA(A − D)e−uDduetD =
∫
[0,t]

euA(A − D)e(t−u)Ddu

=
∫
[0,t]

e(t−u)A(A − D)euDdu =
∫
[0,1]

e(1−s)tA(A − D)estDtds, (14)

where the second equality in (13) is due to the Newton–Leibnitz formula, while the equality
in (14) is based on the change in variable u := st for s ∈ [0,1].

By applying (13) and (14) to −(A⊗I + I⊗B) instead of A, to −(C⊗I + I⊗D) instead
of D, and then by integrating on [0,T], this implies the inequalities in (15):

∫
[0,T]

(
e−tA ⊗ e−tB − e−tC ⊗ e−tD) dµ(t) =

∫
[0,T]

(
e−t(A⊗I+I⊗B) − e−t(C⊗I+I⊗D)

)
dµ(t)

=
∫
[0,T]

∫
[0,1]

e−(1−s)t(A⊗I)−(1−s)t(I⊗B)(C⊗I + I⊗D − A⊗I − I⊗B
)
e−st(C⊗I)−st(I⊗D)t ds dµ(t) (15)

=
∫
[0,T]

∫
[0,1]

e−(1−s)tA−stC⊗e−(1−s)tB−stD(C⊗I + I⊗D − A⊗I − I⊗B
)

t ds dµ(t), (16)

while the equality in (16) is a consequence of the commutativity within the transformer
family {A⊗I, I⊗B, C⊗I, I⊗D}. By evaluating Formula (15) and (16) in an arbitrary X ∈
B(H), we explicitly obtain the proof for Formula (7) (which is just the alternative form of
(15) and (16)).
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To prove the integral representation of Formula (10), it is sufficient to use Formula (7)
to realize that

L [µ]∆A,BX −L [µ]∆C,D(X) = slim
T→+∞

∫
[0,T]

(
e−tAXe−tB− e−tCXe−tD)dµ(t)

= slim
T→+∞

∫
[0,T]

∫
[0,1]

e--(1--s)tA--stC(CX+XD−AX−XB)e--(1--s)tB--stDtds dµ(t), (17)

where the first equality in (17) is based on the double application of [19] (Lemma 2.1(b)),
first to

{
e−tA∗}

t⩾0 and
{

e−tB }
t⩾0, and then to

{
e−tC∗}

t⩾0 and
{

e−tD}
t⩾0, with their [µ]

square integrability supported by the arguments in Example 1.
If, in addition, operators C − A and D − B are accretive, then any of the families{√

t
√

∆C∗−A∗,C−A(I)e−(1−s)tA−stC}
0⩽t, 0⩽s⩽1,

{√
t
√

∆C−A,C∗−A∗(I) e−(1−s)tA∗−stC∗}
0⩽t, 0⩽s⩽1,{√

t
√

∆D∗−B∗,D−B(I) e−(1−s)tB−stD}
0⩽t, 0⩽s⩽1 and

{√
t
√

∆D−B ,D∗−B∗(I) e−(1−s)tB∗−stD∗}
0⩽t, 0⩽s⩽1 is

s.i. family on R+×[0,1]. Indeed, if, for example, we apply Formula (17) to (A∗, A, C∗, C, I)
instead of (A, B, C, D, X), we obtain

L [µ]∆A∗,A(I)−L [µ]∆C∗,C(I) = slim
T→+∞

∫
[0,T]

∫
[0,1]

e−(1−s)tA∗−stC∗
(C∗+ C−A∗−A)e−(1−s)tA−stCtds dµ(t)

⩾ 0. (18)

This shows that slim T→+∞ appearing in (18) is bounded by L [µ]∆A∗,A(I), and therefore, it

is a positively definite operator in B(H). In other words,
{√

t
√

∆C∗−A∗,C−A(I) e−(1−s)tA−stC}
0⩽t, 0⩽s⩽1

is s.i. on R+×[0,1], and the same is true for the three remaining families. Due to [19]
(Lemma 2.1(b)), this proves that Formula (8) holds, while Formula (9) is proved by anal-
ogy. Also, by [19] (Lemma 2.1(a1)), this implies that the o.v. integral appearing on the
right-hand side of Formula (10) is well defined, while [19] (Lemma 2.1(b)) combined with
Formula (17) proves Formula (10).

To prove Formula (11), we conclude directly from Formula (10) that√
∆C∗−A∗,C−A(I)

(
L [µ](A⊗I+ I⊗B)X−L [µ](C⊗I+ I⊗D)X

)√
∆D−B,D∗−B∗(I)

= slim
T→+∞

∫
[0,T]

∫
[0,1]

√
∆C∗−A∗,C−A(I)e

−(1−s)tA−stC((C − A)X+X(D − B)
)

×e−(1−s)tB−stD
√

∆D−B,D∗−B∗(I) tdsdµ(t). (19)

By taking into account that both families {
√

t
√

∆C∗−A∗,C−A(I)e
−(1−s)tA−stC }0⩽t, 0⩽s⩽1 and

{
√

t
√

∆D∗−B∗,D−B(I)e−(1−s)tB−stD}0⩽t, 0⩽s⩽1 are s.i. families on R+×[0,1], we can recognize the
right-hand side of Formula (19) as∫

[0,T]

∫
[0,1]

√
∆C∗−A∗,C−A(I)e−(1−s)tA−stC((C − A)X+X(D − B)

)
e−(1−s)tB−stD

√
∆D−B,D∗−B∗(I) tdsdµ(t),

according to [19] (Th. 3.1 (c)), which proves Formula (11).
The proof for Formula (12) is quite analogous to that for (11), with the only significant

difference being that this time {
√

te−(1−s)tA−stC}0⩽t, 0⩽s⩽1 and {
√

te−(1−s)tB−stD}0⩽t, 0⩽s⩽1 are s.i.
families under consideration.

Note that for A, B, X ∈ B(H), the special case N := 1 in (5) says X − e−TAXe−TB =∫
[0,T] e−tA(AX+XB)e−tBdt for all T ⩾ 0. which immediately implies e−tAX−Xe−tB =

e−tA(X − etAXe−tB) = −
∫
[0,t] e−(t−s)A(AX−XB)e−sBds for all t ∈ R+, which also could be

used to prove (13).
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3.2. Integral Representation Formula for the Remainder of Taylor Approximation for
Laplace Transformers

Recall that for a complex (or finite) Borel measure µ on R+ and IΠ+
def
={z ∈ C : ℜz ⩾ 0},

its Laplace transform f := L[µ] : IΠ+→ C : z 7→
∫
R+

e−tz dµ(t) is holomorphic in the open

right half plane IΠ+, and it satisfies f
(k)
(z) = (−1)k∫

R+
tke−tz dµ(t) for all n ∈ N. If µ has a

finite n-th moment for some n ∈ N, (i.e., if
∫
R+

tnd|µ|(t) < +∞), then (−1)k∫
R+

tke−tz dµ(t) is

also well defined for ℜz = 0 and for any N◦ ∋ k ⩽ n. In this case, (−1)k∫
R+

tke−tCXe−tD dµ(t)
is also well defined for all accretive C, D ∈ B(H) and for any X ∈ B(H).

This leads to the following notation, which will be used in the sequel.

Definition 3. Let n ∈ N, A, B, C, D, X ∈ B(H) and µ be a Borel measure on R+. If for f := L [µ]

operators f (A)
def
=

w∗∫
R+

e−tAdµ(t) and f
(k)
(B) def

= (−1)k w∗∫
R+

tke−tBdµ(t) are well defined for all
N◦ ∋ k ⩽ n, then the generalized derivation (g.d.) Taylor polynomial (respectively, remainder) of
order n in (a fixed) B (evaluated in a variable A) is defined respectively by

Tn( f ;B, A)X def
=

n

∑
k=0

1
k!

∆k
A,BX f

(k)
(B), (20)

Rn( f ;B, A)X def
= f (A)X −

n

∑
k=0

1
k!

∆k
A,BX f

(k)
(B). (21)

If for the generalized derivation transformers ∆A,B
def
= A⊗I + I⊗B and ∆C,D := C⊗I + I⊗D

the o.v. functions e−tAXe−tB and {tke−tCXe−tD}n
k=0 are weakly∗ integrable on R+ for any N ∋

k ⩽ n, then for the Laplace transformer L [µ](∆A,B), its Taylor polynomial (respectively, remainder)
transformer of order n in (a fixed) ∆C,D (evaluated in a variable ∆A,B) is defined by

Tn;∆C,D f (∆A,B)X def
= Tn( f ;∆C,D,∆A,B)X def

=
n

∑
k=0

1
k!
(∆A,B−∆C,D)

k f
(k)
(∆C,D)X, (22)

Rn;∆C,D f (∆A,B)X def
= Rn( f ;∆C,D,∆A,B)X def

= f (∆A,B)X−
n

∑
k=0

1
k!
(∆A,B−∆C,D)

k f
(k)
(∆C,D)X, (23)

where f
(k)
(∆C,D) stands for the transformer (−1)k∫

R+
tke−tC⊗e−tD dµ(t) for any N◦ ∋ k ⩽ n.

Remark 1. The first thing to note is that for the transformer Rn( f ;B, A) defined by (21), the
operator Rn( f ;B, A)(I) generally does not coincide with Rp(φ;H◦,V) defined by (1) if p := n, f :=
φ, H◦ := B and V := A − B, but it does coincide for commuting A and B (i.e. for commuting

H◦ and V). Also, (∆A,B−∆C,D )kX = ∆n
A−C,B−DX = ∑n

k=0(−1 )k( n
k
)
(A − C)n−k−1X(B − D)k.

Transformers f
(k)
(∆C,D) and (∆A,B−∆C,D)k commute whenever ∆A,B and ∆C,D commute, with the later

being satisfied if AC = CA and BD = DB.
The next essential difference between the remainder transformers defined by (1) and (21) is that

the Taylor polynomial transformer defined by (22) is an elementary transformer (mapping), which
allows the approximation of the generalized functional derivation f (A)X−X f (B) by the elementary
transformer ∑n

k=1
1
k! ∆

k
A,BX f

(k)
(B), while the applicability of the remainder in (1) is mainly restricted

to functional perturbations φ(H◦ + V)− φ(H◦).

To consider the estimates for the remainder of the Taylor approximation for Laplace
transformers, we need the integral representation formulas presented in the following lemma.
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Lemma 2. If n ∈ N, µ is a finite Borel measure with finite (n + 1)-th moment and A, B, C, D, X ∈
B(H) are such that A, B, C, D are accretive, AC = CA and BD = DB, then for f := L [µ] (i.e.,
f : IΠ+ → C : z 7→

∫
R+

e−tz dµ(t) )

f (∆A,B)X−
n

∑
k=0

1
k! f

(k)
(∆C,D)(∆A,B−∆C,D)

kX

=
1
n!

∫
R+

∫
[0,t]

e−tAe−u(C−A)∆n+1
C−A,D−BXe−u(D−B)e−tBundu dµ(t), (24)

f (∆A∗,A)(I)−
n

∑
k=0

1
k! f

(k)
(∆C∗,C)(∆A∗,A−∆C∗,C)

k(I)

=
1
n!

∫
R+

∫
[0,t]

e−tA∗
e−u(C−A)∗∆n+1

C∗−A∗,C−A(I)e
−u(C−A)e−tAundudµ(t), (25)

f (∆B,B∗)(I)−
n

∑
k=0

1
k! f

(k)
(∆D,D∗)(∆B,B∗−∆D,D∗)k(I)

=
1
n!

∫
R+

∫
[0,t]

e−tBe−u(D−B)∆n+1
D−B,D∗−B∗(I)e

−u(D−B)∗e−tB∗
undu dµ(t). (26)

Moreover, if A − C and B∗− D∗ are additionally (n + 1)-semiaccretive, then f (∆A∗,A)(I)−
∑n

k=0
1
k! f

(k)
(∆C∗,C)(∆A∗,A−∆C∗,C)

k(I) (respectively, f (∆B,B∗)(I)−∑n
k=0

1
k! f

(k)
(∆D,D∗)(∆B,B∗−∆D,D∗)k(I))

and ∆n+1
C∗−A∗,C−A(I) (respectively, ∆n+1

D−B,D∗−B∗(I)) share the same type of semidefinitness and

∣∣ f (∆A∗,A)(I)−
n

∑
k=0

1
k! f

(k)
(∆C∗,C)(∆A∗,A−∆C∗,C)

k(I)
∣∣

=
1
n!

∫
R+

∫
[0,t]

e−tA∗
e−u(C−A)∗

∣∣∆n+1
C∗−A∗,C−A(I)

∣∣e−u(C−A)e−tAundu dµ(t), (27)

∣∣ f (∆B,B∗)(I)−
n

∑
k=0

1
k! f

(k)
(∆D,D∗)(∆B,B∗−∆D,D∗)k(I)

∣∣
=

1
n!

∫
R+

∫
[0,t]

e−tBe−u(D−B)∣∣∆n+1
D−B,D∗−B∗(I)

∣∣e−u(D−B)∗e−tB∗
undu dµ(t). (28)

Proof. According to the notation from the Definition 3, it follows that

f (∆A,B)X−
n

∑
k=0

1
k! f

(k)
(∆C,D)(∆A,B−∆C,D)

kX =
∫
R+

(
e−tAXe−tB−

n

∑
k=0

(−t)k

k! e−tC∆k
A−C,B−DXe−tD) dµ(t)

=
∫
R+

e−tA
(

X−
n

∑
k=0

tk

k! e−t(C−A)∆k
C−A,D−BXe−t(D−B)

)
e−tBdµ(t)

=
1
n!

∫
R+

∫
[0,t]

e−tAe−u(C−A)∆n+1
C−A,D−BXe−u(D−B)e−tBundu dµ(t). (29)

The last equality in (29) is due to the application of Formula (5) to (C − A, D − B, n) in-
stead of (A, B, n−1), which proves Formula (24). The double application of Formula (24), the
first time to (A∗, A, C∗, C, I) instead of (A, B, C, D, X), and the second time to (B, D, B∗, D∗, I)
instead of (A, B, C, D, X), implies Formulas (25) and (26).

Moreover, if C − A is additionally (n + 1)-semiaccretive, then Formula (25) shows
that Rn( f ; ∆C∗,C, ∆A∗,A)(I) and ∆n+1

C∗−A∗,C−A(I) share the same type of semidefinitness, so due to
|∆n+1

C∗−A∗,C−A(I)| = ±∆n+1
C∗−A∗,C−A(I), this immediately implies Formula (27). The repeated use of

the same arguments suffices to prove Formula (28) as well.

Remark 2. If accretive A, C ∈ B (H ) commute and C − A is (n + 1)-accretive, then Rn( f ;
∆C∗,C, ∆A∗,A) ( I ) ⩾ 0 according to Formula (25), so Tn( f ; ∆C∗,C, ∆A∗,A) ( I ) ⩽ f (∆A∗,A ) ( I ). In
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particular, for A := 0 we have f (∆0,0)(I)−∑n
k=0

(−1)k

k! f
(k)
(∆C∗,C)∆k

C∗,C(I) = Rn( f ;∆C∗,C,∆0,0)(I) ⩾ 0
is C if (n + 1)-accretive. Similarly, if C := 0, and A is (n + 1)-accretive, then the sign of
Rn( f ; ∆0,0, ∆A∗,A) ( I ) = f (∆A∗,A ) ( I ) − ∑n

k=0
1
k! f

(k)
(∆0,0 )∆k

A∗,A( I ) equals to (−1)n+1, implying
(−1)n+1Rn( f ;∆0,0,∆A∗,A)(I) ⩾ 0.

4. Main Results
4.1. Q∗ Norm Inequalities for the Remainder of the Taylor Approximation of Laplace Transformers

The integral representation Formula (24) allows us to estimate the remainder of the
Taylor approximation in (23) for a class of accretive operators.

Theorem 1. If Ψ is an s.n. function, n ∈ N, µ is a finite Borel measure on R+ with the finite
(n + 1)th moment, A, B, C, D, X ∈ B(H), are such that A, B, C, D are accretive, C − A and
D∗− B∗ are (n + 1)-semiaccretive, AC = CA, BD = DB, and ∆n+1

A−C,B−D X ∈ CΨ(H), then for
f := L [µ], the inequality∣∣∣∣∣∣∣∣∆n+1

C∗−A∗,C−A(I)
∣∣1

2
(

f (∆A,B)X −
n

∑
k=0

1
k! f

(k)
(∆C,D)(∆A,B−∆C,D)

kX
)∣∣∆n+1

D−B,D∗−B∗(I)
∣∣1

2
∣∣∣∣∣∣

Ψ

⩽
∣∣∣∣∣∣∣∣ f (∆A∗,A)(I)−

n

∑
k=0

1
k! f

(k)
(∆C∗,C)(∆A∗,A−∆C∗,C)

k(I)
∣∣1

2
n+1

∑
k=0

(n+1
k
)
(A − C)n+1−kX(B − D)k

×
∣∣ f (∆B,B∗)(I)−

n

∑
k=0

1
k! f

(k)
(∆D,D∗)(∆B,B∗−∆D,D∗)k(I)

∣∣1
2
∣∣∣∣∣∣

Ψ
, (30)

holds under any of the additional conditions:
(a) Ψ := ℓ1, i.e., ||·||Ψ is the trace norm ||·||1;
(b) Ψ := Φ

(p)∗
for some p ⩾ 2 and at least one of the pairs (A, C∗) and (B, D∗) consists of normal

operators;
(c) Both pairs (A, C∗) and (B, D∗) consist of normal operators.

Proof. If D∗− B∗ is (n + 1)-accretive, then the proof for Ineq. (30) relies on the following
calculations:

∣∣∣∣∣∣∣∣∆n+1
C∗−A∗,C−A(I)

∣∣1/2
(

f (∆A,B)X −
n

∑
k=0

1
k! f

(k)
(∆C,D)(∆A,B−∆C,D)

kX
)∣∣∆n+1

D−B,D∗−B∗(I)
∣∣1/2

∣∣∣∣∣∣
Ψ

=
1
n!

∣∣∣∣∣∣∣∣∆n+1
C∗−A∗,C−A(I)

∣∣1/2
∫
R+

∫ t

0
e−tAe−u(C−A)∆n+1

C−A,D−BXe−u(D−B)e−tBundu dµ(t)
∣∣∆n+1

D−B,D∗−B∗(I)
∣∣1/2

∣∣∣∣∣∣
Ψ

(31)

⩽
1
n!

∣∣∣∣∣∣∣∣(∫R+

∫ t

0
e−tA∗

e−u(C−A)∗
∣∣∆n+1

C∗−A∗,C−A(I)
∣∣e−tAe−u(C−A)undudµ(t)

)1/2
∆n+1

C−A,D−BX

×
(∫

R+

∫ t

0
e−u(D−B)e−tB∣∣∆n+1

D−B,D∗−B∗(I)
∣∣e−tB∗

e−u(D−B)∗undudµ(t)
)1/2

∣∣∣∣∣∣∣∣
Ψ

(32)

=
1
n!

∣∣∣∣∣∣∣∣∣∣∣∫R+

∫ t

0
e−tA∗

e−u(C−A)∗∆n+1
C∗−A∗,C−A(I)e

−tAe−u(C−A)undudµ(t)
∣∣∣1/2

∆n+1
C−A,D−BX

×
∣∣∣∫
R+

∫ t

0
e−u(D−B)e−tB∆n+1

D−B,D∗−B∗(I)e
−tB∗

e−u(D−B)∗undudµ(t)
∣∣∣1/2

∣∣∣∣∣∣∣∣
Ψ

(33)

=

∣∣∣∣∣∣∣∣∣∣∣ f (∆A∗,A)(I)−
n

∑
k=0

1
k! f

(k)
(∆C∗,C)(∆A∗,A − ∆C∗,C)

k(I)
∣∣∣1/2

∆n+1
A−C,B−DX

×
∣∣∣ f (∆B,B∗)(I)−

n

∑
k=0

1
k! f

(k)
(∆D,D∗)(∆B,B∗ − ∆D,D∗)k(I)

∣∣∣1/2
∣∣∣∣∣∣∣∣

Ψ
. (34)

Here, the equality in (31) is based on the integral representation identities (29), while
Ineq. (32) is based on the application of the Cauchy–Schwarz norm inequalities to s.i. fam-
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ilies
{
|∆n+1

C∗−A∗,C−A(I)|1/2e−tAune−u(C−A)
}

0⩽u⩽t and {|∆n+1
D−B,D∗−B∗(I)|1/2e−tB∗

une−u(D−B)∗}0⩽u⩽t.
Specifically, in case (a), we apply Ineq. (30) in [19] (Th. 3.1 (c)); in case (b), we apply the first
inequality in (32) in [19] (Th. 3.1 (d)); and in case (c), we apply Ineq. (32) in [19] (Th. 3.1 (e)).
Moreover, Equation (33) is based on Formulas (27) and (28), while the equality in (34)
follows by the integral representation Formulas (25) and (26).

Corollary 1. If µ is a Borel probability measure on R+ with a finite (n + 1)th moment, A, B, X ∈
B(H) are such that A, B∗ are (n + 1)-accretive and ∆n+1

A,B X ∈ CΨ(H) for an s.n. function Ψ, then
for f := L [µ], we have f (0) = 1, and∣∣∣∣∣∣√∆n+1

A∗,A (I)
(

f (∆A,B)X−
n

∑
k=0

1
k! f

(k)
(0)∆k

A,BX
)√

∆n+1
B,B∗ (I)

∣∣∣∣∣∣
Ψ

⩽
∣∣∣∣∣∣((−1)n+1

(
f (∆A∗,A)(I)−

n

∑
k=0

1
k! f

(k)
(0)∆k

A∗,A(I)
))1

2
∆n+1

A,B X

×
(
(−1)n+1( f (∆B,B∗)(I)−

n

∑
k=0

1
k! f

(k)
(0)∆k

B,B∗(I)
))1

2
∣∣∣∣∣∣

Ψ
, (35)

∣∣∣∣∣∣√∆n+1
A∗,A (I)

(
f (0)X−

n

∑
k=0

(−1)k

k! f
(k)
(∆A,B)∆k

A,BX
)√

∆n+1
B,B∗ (I)

∣∣∣∣∣∣
Ψ

⩽
∣∣∣∣∣∣( f (0)I−

n

∑
k=0

(−1)k

k! f
(k)
(∆A∗,A)∆k

A∗,A(I)
)1

2
∆n+1

A,B X
(

f (0)I−
n

∑
k=0

(−1)k

k! f
(k)
(∆B,B∗)∆k

B,B∗(I)
)1

2
∣∣∣∣∣∣

Ψ
(36)

hold under any of the following conditions:
(a) Ψ := ℓ1;
(b) Ψ := Φ

(p)∗
for some p ⩾ 2 and at least one of operators A or B∗ is normal;

(c) Both A and B∗ are normal operators.
If A, B∗ are additionally (n + 1)-hyperaccretive, then the expression on the right-hand side

in (36) further estimated from above by f (0)
∣∣∣∣∑n+1

k=0

(n+1
k
)

An−k+1XBk
∣∣∣∣

Ψ.

Proof. Formula (35) is just a special case C := D := 0 of Ineq. (30), combined with
Formula (27). Similarly, Formula (36) is also the special case of (30), applied to (0, 0, A, B)
instead of (A, B, C, D), this time combined with Formula (28). Finally, if A, B∗ are (n + 1)-
hyperaccretive, then for f

(k)
(z) = (−1)k∫

R+
tn dµ(t), we have (−1)k f

(k)
(∆A∗,A)∆k

A∗,A ( I ) =∫
R+

e−tA∗
∆k

A∗,A(I)e−tAtn dµ(t) ⩾ 0 for any N◦ ∋ k ⩽ n, so ∑n
k=0

(−1)k

k! f
(k)
(∆A∗,A)∆k

A∗,A(I) ⩾ 0, as

well as 0 ⩽ f (0)I−∑n
k=0

(−1)k

k! f
(k)
(∆A∗,A)∆k

A∗,A(I) ⩽ f (0)I, according to Remark 2. Similarly

0 ⩽ f (0)I−∑n
k=0

(−1)k

k! f
(k)
(∆B,B∗)∆k

B,B∗(I) ⩽ f (0)I, so the additional estimate deduces based on
the monotonicity property (2) (i.e., (1) in [14]).

Corollary 2. If A, D, X ∈ B(H) are such that A, D∗ are (n + 1)-accretive for some n ∈ N and
∆n+1

A,−D X ∈ CΨ(H) for some s.n. function Ψ, then

∣∣∣∣∣∣(∆n+1
A∗,A (I)

)1
2
(

f (A)X−
n

∑
k=0

1
k!

∆k
A,−DX f

(k)
(D)

)(
∆n+1

D,D∗ (I)
)1

2
∣∣∣∣∣∣

Ψ

⩽
∣∣∣∣∣∣((−1)n+1

(
f (∆A∗,A)(I)−

n

∑
k=0

1
k!

f
(k)
(0)∆k

A∗,A(I)
))1

2
n+1

∑
k=0

(−1)k(n+1
k
)

An+1−kXDk

×
(

f (0)(I)−
n

∑
k=0

(−1)k

k!
f
(k)
(∆D,D∗)

(
∆k

D,D∗(I)
))1

2
∣∣∣∣∣∣

Ψ
(37)

holds under any of the following conditions:
(a) Ψ := ℓ1, i.e., ||·||Ψ is the trace norm ||·||1;
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(b) Ψ := Φ
(p)∗

for some p ⩾ 2 and at least one of operators A or B∗ is normal;
(c) Both A and D are normal operators.

Proof. We just have to recognize that in the special case B := C := 0 of Ineq. (30), we have
f
(k)
(∆A,B)X = f

(k)
(A)X and f

(k)
(∆C,D)X = X f

(k)
(D) for all N◦ ∋ k ⩽ n, so the left-hand sides

of (30) and (37) in this case coincide. That the same is true for their right-hand sides, we
have seen already in the proof of Corollary 1.

4.2. Q Norm Inequalities for the Remainder of the Taylor Approximation of Laplace Transformers

It is not surprising that norm inequalities for Q and Q∗ norms have a different (alge-
braic) forms. Probably the best known examples for this noncommutative phenomenon is
a pair of Clarkson–McCarthy inequalities for Shatten–von Neumann norms, saying that

||A + B||pp + ||A − B||pp ⩽ 2p−1(||A||pp + ||B||pp
)

for 2 ⩽ p < +∞,

||A + B||
p

p−1
p + ||A − B||

p
p−1
p ⩽ 2

(
||A||

p
p−1
p + ||B||

p
p−1
p

) 1
p−1 for 1 ⩽ p ⩽ 2;

see [28] (Th. 1.21). Another examples is provided by the Cauchy–Schwarz norm inequalities
in [18,19], which should be used to derive the next Q norm inequalities for the remainder
of the Taylor approximation of Laplace transformers.

Theorem 2. Let Ψ be an s.n. function, n ∈ N, µ be a finite Borel measure on R+ with the finite
(n + 1)th moment, A, B, C, D, X ∈ B(H) be such that A, B, C, D are accretive, AC = CA, BD =
DB, ∆n+1

A−C,B−DX ∈ CΨ(H), ∆n+1
C−A,C∗−A∗(I) be invertible, and f := L [µ].

If C∗− A∗ and D∗− B∗ are (n + 1)-accretive, then the inequality∣∣∣∣∣∣( f (∆A,B)X −
n

∑
k=0

1
k! f

(k)
(∆C,D)(∆A,B−∆C,D)

kX
)(

∆n+1
D−B,D∗−B∗(I)

)1
2
∣∣∣∣∣∣

Ψ

⩽
∣∣∣∣∣∣ f (∆A∗,A)(I)−

n

∑
k=0

1
k! f

(k)
(∆C∗,C)(∆A∗,A−∆C∗,C)

k(I)
∣∣∣∣∣∣1

2

×
∣∣∣∣∣∣(∆n+1

C−A,C∗−A∗(I)
)−1

2∆n+1
A−C,B−DX

(
f (∆B,B∗)(I)−

n

∑
k=0

1
k! f

(k)
(∆D,D∗)(∆B,B∗−∆D,D∗)k(I)

)1
2
∣∣∣∣∣∣

Ψ
(38)

holds under any of the additional conditions:
(a) Ψ := Φ

(p)
for some p ⩾ 2 and (B, D) consists of normal operators,

(b) Ψ := ℓ2, i.e., ||·||Ψ is the Hilbert-Schmidt norm ||·||2.
Alternatively, if C−A and D−B are (n + 1)-accretive, then the inequality∣∣∣∣∣∣(∆n+1

C∗−A∗,C−A(I)
)1

2
(

f (∆A,B)X −
n

∑
k=0

1
k! f

(k)
(∆C,D)(∆A,B−∆C,D)

kX
)∣∣∣∣∣∣

Ψ

⩽
∣∣∣∣∣∣ f (∆B,B∗)(I)−

n

∑
k=0

1
k! f

(k)
(∆D,D∗)(∆B,B∗−∆D,D∗)k(I)

∣∣∣∣∣∣1
2

×
∣∣∣∣∣∣( f (∆A∗,A)(I)−

n

∑
k=0

1
k! f

(k)
(∆C∗,C)(∆A∗,A−∆C∗,C)

k(I)
)1

2
∆n+1

A−C,B−DX
(
∆D∗−B∗,D−B

n+1 (I)
)−1

2
∣∣∣∣∣∣

Ψ
(39)

holds under any of the additional conditions:
(c) Ψ := Φ

(p)
for some p ⩾ 2 and (A, C) consists of normal operators;

(d) Ψ := ℓ2.
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Proof. The next equality in (40) is based again on the integral representation identities (29),∣∣∣∣∣∣( f (∆A,B)X −
n

∑
k=0

1
k! f

(k)
(∆C,D)(∆A,B−∆C,D)

kX
)(

∆n+1
D−B,D∗−B∗(I)

)1
2
∣∣∣∣∣∣

Ψ

=
1
n!

∣∣∣∣∣∣∫
R+

∫ t

0
e−tAe−u(C−A)∆n+1

C−A,D−BXe−u(D−B)e−tBundu dµ(t)
(
∆n+1

D−B,D∗−B∗(I)
)1

2
∣∣∣∣∣∣

Ψ
(40)

=
1
n!

∣∣∣∣∣∣∫
R+

∫ t

0
e−tAe−u(C−A)(∆n+1

C−A,C∗−A∗(I)
)1/2(∆n+1

C−A,C∗−A∗(I)
)−1

2∆n+1
C−A,D−BX

× e−u(D−B)e−tB(∆n+1
D−B,D∗−B∗(I)

)1
2undu dµ(t)

∣∣∣∣∣∣
Ψ

⩽
1
n!

∣∣∣∣∣∣∫
R+

∫ t

0
e−tAe−u(C−A)∆N+1

C−A,C∗−A∗(I)e−tA∗
e−u(C−A)undu dµ(t)

∣∣∣∣∣∣1
2

×
∣∣∣∣∣∣(∆n+1

C−A,C∗−A∗(I)
)−1

2∆n+1
C−A,D−BX

(∫
R+

∫ t

0
e−u(D−B)e−tB(∆n+1

D−B,D∗−B∗(I)
)
e−tB∗

e−u(D−B)∗undudµ(t)
)1

2
∣∣∣∣∣∣

Ψ
(41)

=
∣∣∣∣∣∣ f (∆A∗,A)(I)−

n

∑
k=0

1
k! f

(k)
(∆C∗,C)(∆A∗,A−∆C∗,C)

k(I)
∣∣∣∣∣∣1

2

×
∣∣∣∣∣∣(∆n+1

C−A,C∗−A∗(I)
)−1

2∆n+1
A−C,B−DX

(
f (∆B,B∗)(I)−

n

∑
k=0

1
k! f

(k)
(∆D,D∗)(∆B,B∗−∆D,D∗)k(I)

)1
2
∣∣∣∣∣∣

Ψ
. (42)

while Ineq. (41) is based on the application of the Cauchy–Schwarz norm inequalities to
s.i. families

{
(∆n+1

C−A,C∗−A∗(I))
1/2e−tA∗

e−u(C−A)∗un}
0⩽u⩽t,

{
(∆n+1

D−B,D∗−B∗(I))
1/2e−tB∗

e−u(D−B)∗un}
0⩽u⩽t,

also applied to
(
∆n+1

C−A,C∗−A∗(I)
)−1

2∆n+1
A−C,B−DX instead of X. To specify, in the case (a), we apply

Ineq. (29) in [19] (Th. 3.1 (a)), while in the case (b), we apply the inequality in (29) related
to [19] (Th. 3.1 (b)). Finally, the equality in (42) is derived by the double application of the
identities (29), first to (A, C, A∗, C∗, I) instead of (A, B, C, D, X), and later to (B, D, B∗, D∗, I)
instead of (A, B, C, D, X), which proves Ineq. (38).

The proof for Ineq. (39) follows from∣∣∣∣∣∣(∆n+1
C∗−A∗,C−A(I)

)1
2
(

f (∆A,B)X−
n

∑
k=0

1
k! f

(k)
(∆C,D)(∆A,B−∆C,D)

kX
)∣∣∣∣∣∣

Ψ

=
∣∣∣∣∣∣( f (∆B∗, A∗)X∗−

n

∑
k=0

1
k! f

(k)
(∆D∗,C∗)(∆B∗, A∗−∆D∗,C∗)

kX∗
)(

∆n+1
C∗−A∗,C−A(I)

)1
2
∣∣∣∣∣∣

Ψ
(43)

⩽
∣∣∣∣∣∣ f (∆B,B∗)(I)−

n

∑
k=0

1
k! f

(k)
(∆D,D∗)(∆B,B∗−∆D,D∗)k(I)

∣∣∣∣∣∣1
2

×
∣∣∣∣∣∣(∆D∗−B∗,D−B

n+1 (I)
)−1

2∆n+1
B∗−A∗,D∗−C∗X∗

(
f (∆A∗,A)(I)−

n

∑
k=0

1
k! f

(k)
(∆C∗,C)(∆A∗,A−∆C∗,C)

k(I)
)1

2
∣∣∣∣∣∣

Ψ
(44)

=
∣∣∣∣∣∣ f (∆B,B∗)(I)−

n

∑
k=0

1
k! f

(k)
(∆D,D∗)(∆B,B∗−∆D,D∗)k(I)

∣∣∣∣∣∣1
2

×
∣∣∣∣∣∣( f (∆A∗,A)(I)−

n

∑
k=0

1
k! f

(k)
(∆C∗,C)(∆A∗,A−∆C∗,C)

k(I)
)1

2
∆n+1

A−C,B−DX
(
∆D∗−B∗,D−B

n+1 (I)
)−1

2
∣∣∣∣∣∣

Ψ
, (45)

where the equalities in (43) and (45) are due to the norm properties for adjoint operators,
while the inequality in (44) is obtained by applying Ineq. (38) to (B∗, A∗, D∗, C∗, X∗) instead
of (A, B, C, D, X).

Remark 3. The invertibility condition required in Theorem 2 is satisfied if ∆n+1
C−A,C∗−A∗ ( I) ≫ 0,

i.e., if ∆n+1
C−A,C∗−A∗(I) is uniformly (n + 1)-accretive. As ∆n+1

C−A,C∗−A∗(I) ⩾ 0, then it is right or left
invertible if and only if it is invertible.

5. Conclusions

Concluding this paper, we briefly outline the prospects for future developments in this
field of investigation, as the problems related to Laplace transformers open many interesting
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and promising questions. So, the manuscript containing the Schatten–von Neumann norm
inequalities for perturbations of Laplace transformers of accretive derivations, which
complements the results published in [16], is expected to be submitted for publication
very soon.

The problems considered in this paper arise from the question of approximating the
function derivation transformer X 7→ f (A)X − X f (D) by elementary (mappings) trans-
formers, in our case by ∑n

k=1
1
k! ∆

k
A,−DX f

(k)
(D ), which involves higher-order generalized

derivations ∆k
A,−D : X 7→ ∑k

i=0(−1)i(k
i)Ak−1XDi. Thus, Ineq. (37) in Corollary 2 gives the

weighted estimate, which provides one of the answers to the raised approximation question.
Work involving estimates for some other types of approximation by elementary transform-
ers is in preparation and should contribute to the development of this (transformers) type
of noncommutative (generalization of the standard) calculus.

Norm inequalities for Taylor reminders for transformers related to analytic functions
with non-negative Taylor coefficients have already been obtained, and the corresponding
manuscript is in preparation, while the analysis of Taylor reminders for transformers
related to other classes of holomorphic functions are also advancing.

Probably the most important step to develop the applications of derivations and/or
Taylor reminders for Laplace transformers related to (hyper) accretive operators is the devel-
opment of the analog of the (higher-order) spectral shift function in the adequate context.
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18. Jocić, D.R. Cauchy-Schwarz norm inequalities for weak*-integrals of operator valued functions. J. Funct. Anal. 2005, 218, 318–346.
[CrossRef]
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