Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1325
DC FieldValueLanguage
dc.contributor.authorVukojević, Filipen_US
dc.contributor.authorAntić, Miroslavaen_US
dc.date.accessioned2024-08-08T10:14:22Z-
dc.date.available2024-08-08T10:14:22Z-
dc.date.issued2024-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1325-
dc.description.abstractHelicoidal surfaces of constant mean curvature were fully described by do Carmo and Dajczer. However, the obtained parameterizations are given in terms of somewhat complicated integrals, and as a consequence, not many examples of such surfaces are visualized. In this paper, by using these methods in some particular cases, we provide several interesting visualizations involving these surfaces, mostly as an isometric deformation of a rotational surface. We also give interpretations of some older results involving helicoidal surfaces, motivated by the work carried out by Malkowsky and Veličković. All of the graphics in this paper were created in Wolfram Mathematica.en_US
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.ispartofAxiomsen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.subjecthelicoidal surfacesen_US
dc.subjectisometric deformationen_US
dc.subjectvisualizationen_US
dc.titleVisualization of Isometric Deformations of Helicoidal CMC Surfacesen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/axioms13070457-
dc.identifier.isi001276672400001-
dc.contributor.affiliationGeometryen_US
dc.relation.issn2075-1680en_US
dc.description.rankM21en_US
dc.relation.firstpageArticle no. 457en_US
dc.relation.volume13en_US
dc.relation.issue7en_US
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeArticle-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptGeometry-
crisitem.author.orcid0000-0002-2111-7174-
Appears in Collections:Research outputs
Files in This Item:
File Description SizeFormat
axioms-13-00457.pdf10.8 MBAdobe PDF
View/Open
Show simple item record

Page view(s)

15
checked on Nov 15, 2024

Download(s)

2
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons