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Abstract: Helicoidal surfaces of constant mean curvature were fully described by do Carmo and
Dajczer. However, the obtained parameterizations are given in terms of somewhat complicated
integrals, and as a consequence, not many examples of such surfaces are visualized. In this paper, by
using these methods in some particular cases, we provide several interesting visualizations involving
these surfaces, mostly as an isometric deformation of a rotational surface. We also give interpretations
of some older results involving helicoidal surfaces, motivated by the work carried out by Malkowsky
and Veličković. All of the graphics in this paper were created in Wolfram Mathematica.
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1. Introduction

Surfaces in the Euclidean three-dimensional space that satisfy particularly nice properties
regarding their intrinsic or extrinsic curvatures have always been of interest. Surfaces with the
constant mean curvature (CMC) H are a natural generalization of the minimal surfaces, where
H = 0. While the minimal surfaces are those that minimize area with some fixed boundary,
and may be regarded as those that correspond to zero pressure difference, a proper CMC
surface corresponds to a non-zero pressure difference, and as such, has wide applications in
physics, chemistry, engineering, and architecture, in particular for air-supported constructions.
Surfaces that are moreover invariant for some group of transformations, as rotational surfaces
and their generalization, helicoidal surfaces, are, may also be applied in engineering design
and computer graphics.

The rotational surfaces with constant mean curvature (CMC) are well known and were
first described by Delauney; see [1]. The notion of helicoidal surfaces has also been known
for a long time. They represent a natural generalization of rotational surfaces and they are,
roughly speaking, generated by simultaneously rotating and translating a regular planar
curve (called a profile curve) around a fixed line (called an axis) that lies in that given
plane, in such a manner that the speed of translation is proportional to the angular velocity
of rotation (such motion is called a screw motion). It is, therefore, quite interesting that
the classification of the helicoidal CMC surfaces with non-zero mean curvature was given
almost 150 years later, by Do Carmo and Dajczer in [2]. Moreover, using their approach,
the minimal helicoidal surfaces were given in [3]. Interestingly, to obtain the classification
in [2], the authors used Bour’s theorem [4], which proves that for any helicoidal surface,
regardless of the mean curvature, there exists a two-parameter family of helicoidal surfaces
which are mutually isometric to it and containing a rotational surface as a special case
of a helicoidal surface. Further, the authors used the existence of such Bour’s families to
extrapolate, in a effective and clever manner, the CMC helicoidal surfaces by showing that
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for any such surface, there exists a family of CMC helicoidal surfaces isometric to it, all
with the same mean curvature.

However, as a result, these surfaces are described in terms of somewhat complicated
integrals, involving functions which are mostly arbitrary, with a few additional properties,
such as smoothness, for instance. As an immediate practical consequence, it turns out that
not many examples of such surfaces are yet visualized. In this paper, we use the methods
given in [2]. Particular calculations, which straightforwardly follow [2], were performed
in [5]. However, the aim was to present the examples of such CMC surfaces obtained in
different moments of a certain isometric deformation of rotational surfaces, by using the
family parameter as time. This imposed the condition to present the expressions in order
to depend smoothly over the parameter and, further, in some of the expressions, taking
some of the terms with both positive and negative sign. Moreover, for particular choices of
the constant B0 defining the family, we provide a visualization of examples of such CMC
helicoidal families and present here their elements at particular moments.

In this paper, we choose the Oz-axis for the axis of helicoidal motion, and as we will
focus on regular surfaces, the profile curve will be a regular curve

(x(r), 0, z(r)), r ∈ (a, b),

where x(r) is a positive function. If we introduce a value h ≥ 0 (called pitch) that represents
the height difference between any point and its image after screw motion in a unit of time,
we see that we can formally define the screw motion of a profile curve by

x(r)

0

z(r)

→


cos θ − sin θ 0

sin θ cos θ 0

0 0 1




x(r)

0

z(r)

+


0

0

hθ

.

Therefore, a helicoidal surface of the pitch h is given in its parametric form by:

H(r, θ) := (x(r) cos θ, x(r) sin θ, z(r) + hθ), (r, θ) ∈ (a, b)× R. (1)

In particular, the curves of the form r = const are called the helices on H(r, θ).
Obviously, for h = 0, we obtain rotational surfaces.

2. Delauney’s Surfaces

En route to classification of helicoidal CMC surfaces, the first step was to describe
rotational CMC surfaces (also known as the Delauney surfaces). Kenmotsu in [6] appro-
ached the problem by deriving the equation for mean curvature of a rotational surface, that,
in general, is not constant. If we assume that the profile curve of a rotational surface is a
naturally parameterized C2-curve

(x(s), 0, z(s)), s ∈ (a, b)

where x(s) > 0, we obtain a differential equation whose mean curvature H(s) must satisfy:

2x(s)H(s)− z′(s) + x(s)x′′(s)z′(s)− x(s)x′(s)z′′(s) = 0.

Multiplying the previous equation with x′ and z′, respectively, along with the fact that
the profile curve is parameterized by a natural parameter, yields the following equations:

2xx′H(s)− x′z′ − xz′′︸ ︷︷ ︸
(xz′)′

= 0,

2xH(s)z′ + xx′′ + (x′)2︸ ︷︷ ︸
(xx′)′

−1 = 0,
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which combined produce the following ODE:

2H(s)(xz′ − xx′) + (xx′ + xz′)′ − 1 = 0. (2)

If we define the following complex function f (s) := xx′ + ixz′, Equation (2) becomes
a first-order linear ODE

f ′(s)− 2iH(s) f (s)− 1 = 0,

which is easily solvable and gives us the three-parameter family of profile curves for a
rotational surface with mean curvature H(s):

X(s; H(s), c1, c2, c3) := (
√
(F(s)− c2)2 + (G(s) + c1)2, 0,∫ s

0
(G(t)+c1)F′(t)−(F(t)−c2)G′(t)√

(F(s)−c2)2+(G(s)+c1)2
dt + c3), s ∈ (a, b),

(3)

where the functions F(s) and G(s) are defined as:
F(s) :=

∫ s
0 sin

(
2
∫ t

0 H(u)du
)

dt

G(s) :=
∫ s

0 cos
(

2
∫ t

0 H(u)du
)

dt.

Firstly, we wish to see what are the minimal rotational surfaces, that is, what happens
when H(s) is equal to zero. In that case, the aforementioned three-parameter family comes
down to √c2

2 + (s + c1)2, 0,
∫ s

0

c2√
c2

2 + (t + c1)2
dt + c3

, (4)

and that is a part of a plane (for c2 = 0), or a catenoid. In the remaining cases, by properly
choosing the sign of the normal vector field, we may assume that H(s) = H > 0. If
we introduce a positive constant B0 = 2Hc1 and apply adequate translations, the profile
curve (4) becomes 1

2H

√
1 + 2B0 sin(2Hs) + B2

0, 0,
∫ s

0

1 + B0 sin(2Ht)√
1 + 2B0 sin(2Ht) + B2

0

dt

.

In [6], it was shown that possible rotational surfaces that can be generated by these
profile curves are:

• Cylindrical surfaces, for B0 = 0.
• Spherical surfaces, for B0 = 1.
• Parts of an unduloid, for B0 ∈ (0, 1).
• Parts of a nodoid, for B0 ∈ (1,+∞).

All of the previous observations are summarized in the following theorem:

Theorem 1. (Delauney) Rotational surfaces with the constant non-zero mean curvature are
cylindrical or spherical surfaces or parts of an unduloid or a nodoid. Only minimal rotational
surfaces are parts of planes and catenoids.

Remark 1. One way of visualizing non-minimal Delauney surfaces is through a deformation with
a fixed mean curvature, where we interpret the parameter B0 as time, and through its continuous
movement we obtain all of the non-minimal Delauney surfaces with a fixed mean curvature H.

We may demonstrate the previous considerations for the Delauney surfaces of mean curvature
H = 1

2 and s ∈ (0, 8); see Figure 1.
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Figure 1. Deformation of Delauney’s surfaces, all with the same constant mean curvature H = 1
2 . The

starting point of the deformation is a cylinder at moment B0 = 0. Following Delauney’s surfaces are
an unduloid at the moment B0 = 0.3, an unduloid at the moment B0 = 0.8, a sphere(s) at the moment
B0 = 1, a nodoid at the moment B0 = 1.5, and a nodoid at the moment B0 = 2.6.

3. Visualization of Bour’s Theorems

In this section, we focus on two older claims related to helicoidal surfaces, the latter of
which represented a starting point in the paper [2] en route to fully classifying helicoidal
CMC surfaces and giving their global parameterization. Since we consider proper helicoidal
surfaces of the pitch h0 ≥ 0, by possible reparameterization, we may take it that they are
locally given by

H(r, θ) := (r cos θ, r sin θ, λ(r) + h0θ), (r, θ) ∈ (0, a)× (0, 2π). (5)

Now, we recall the statement of Bour’s theorem. Having in mind that our main goal
here is to construct and visualize new examples of CMC helicoidal surfaces, we present
here a proof in more detail, following proofs given in [2,7,8].
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Theorem 2. (a) (Bour’s theorem) Each helicoidal surface (5) is isometric to some rotational surface.
The listed isometry maps helices of the helicoidal surface to parallels of the rotational surface.
(b) (Bour’s family) Each helicoidal surface (5) is a member of a two-parameter family of helicoidal
surfaces that are all mutually locally isometric.

Proof. (a) Via direct computation, we see that the first fundamental form of the helicoidal
surface H(r, θ) is equal to:

ds2 = (1 + (λ′(r))2)dr2 + 2h0λ′(r)drdθ + (r2 + h2
0)dθ2. (6)

Firstly, we regard the reparameterization

(r, θ) := Ψ(r, θ) = (Ψ1(r, θ), Ψ2(r, θ)) :=
(

r, θ +
∫ h0λ′(r)

r2 + h0
2 dr
)

. (7)

Its first fundamental form is:

ds2 =

(
1 +

r2(λ′(r))2

r2 + h0
2

)
dr2 + (r2 + h0

2)dθ
2
.

Further, we may introduce another reparameterization with parameters r1 and θ1 in
the following manner:

(r1, θ1) := Φ(r, θ) =

(∫ √
1 +

r2(λ′(r))2

r2 + h0
2 dr, θ

)
. (8)

It is clear that we have transformed parameter domain (0, a)× (0, 2π) of H(r, θ) onto
the domain Φ ◦ Ψ((0, a)× (0, 2π)), which is of the form I1 × I2, where I1 and I2 are open
intervals on the real line. Now, the first fundamental form of the helicoidal surface has the
following form:

ds2 = dr2
1 + (r2 + h0

2)dθ2
1 . (9)

Let us now observe rotational surfaces given parameterically by

R(u, v) := (u cos v, u sin v, ϕ(u)), u ∈ J, v ∈ I2, (10)

where J is an open subinterval of (0,+∞). The first fundamental form of R(u, v) is

ds2 = (1 + (ϕ′(u))2)du2 + u2dv2. (11)

Let us consider the transformation given by
u =

√
r2 + h2

0 =
√

r2 + h0
2,

v = θ = θ +
∫ h0λ′(r)

r2+h0
2 dr.

(12)

Straightforwardly, we have that

dr1

du
=

dr
du

√
1 +

r2(λ′(r))2

r2 + h2
0

=

√
1 + (λ′(r))2 +

h2
0

r2 ≥ 1.
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Hence, there exist a differentiable function ϕ such that dr1
du =

√
1 + ( dϕ

du )
2. Then, ϕ is

given by

ϕ(u) =
∫

ϕ′(u)du =
∫ √ dr2

1
du2 − 1du =

∫ √
dr2

1 − du2

=
∫ √

1 +
r2(λ′(r))2

r2 + h0
2 − r2

r2 + h0
2 dr =

∫ √h0
2 + r2(λ′(r))2

r2 + h0
2 dr.

Now, the reparameterization is of the formr1 =
∫ u

0

√
1 + (ϕ′(t)2)dt,

θ1 = v
(13)

and, moreover, the function g(u) :=
∫ u

0

√
1 + (ϕ′(t)2)dt maps J to I1. Therefore, by taking

such a function ϕ into (10), we straightforwardly conclude that the given reparametrizations
of H(r, θ) and R(u, v) have the first fundamental forms that coincide, and further, the
rotatational surface (10) is locally isometric to the helicoidal surface (5).

We note that the obtained rotational surface R(r, θ) is parameterized in the following way:
x =

√
r2 + h0

2 cos
(

θ +
∫ h0λ′(r)

r2+h0
2 dr
)

,

y =
√

r2 + h0
2 sin

(
θ +

∫ h0λ′(r)
r2+h0

2 dr
)

,

z =
∫ √ h0

2+r2(λ′(r))2

r2+h0
2 dr.

(14)

As the helices on the helicoidal surfaces are curves given by r = r0 = const, which
further implies that λ′(r) = 0, we obtain that the image of the helix on H(r, θ), with r = r0

will be the circle of radius
√

r2
0 + h0

2, with the height h0 arsinh( r0
h0
), i.e., a parallel on the

rotational surface. Let us rewrite the first fundamental form (6) of H(r, θ):

ds2 =

(
1 +

(λ′(r))2)(r2 + h2
0)

(r2 + h2
0)

)
dr2 + 2h0λ′(r)drdθ + (r2 + h2

0)dθ2

=

(
1 +

r2(λ′(r)2)

(r2 + h2
0)

)
dr2 + (r2 + h2

0)

(
dθ +

λ′(r)h0

r2 + h2
0

dr

)2

.

By taking so-called natural parameters of the helicoidal surface, defined as:
σ = σ(r, θ) :=

∫ √
1 + (λ′(r))2r2

(r2+h2
0)

dr

τ = τ(r, θ) := θ + h0
∫ λ′(r)

r2+h2
0
dr

(15)

we obtain:
ds2 = dσ2 + U(σ)2dτ2, (16)

where the positive function U(σ) is given by U(σ) :=
√

r2 + h2
0. Note that the parameter σ

is independent of θ.
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Now, let us consider an arbitrary positive function U(σ) and an arbitrary real number
h ≥ 0. We want to construct functions r, λ, and θ depending on variables σ and τ, which
satisfy the following equations:

dσ2 = dr2 + r2

r2+h2 dλ2

U(σ)dτ = ±
√

r2 + h2(dθ + h
r2+h2 dλ).

(17)

Clearly, such functions r and λ will not depend on τ. By dividing the second equation
in (17) with

√
r2 + h2, we obtain the following PDE:

dθ = ± U(σ)√
r2 + h2

dτ − h
r2 + h2 dλ = ± U(σ)√

r2 + h2
dτ − h

r2 + h2
dλ

dσ
dσ.

Comparing the previous equation with differential dθ = dθ
dσ dσ + dθ

dτ dτ yields the
system:

dθ

dσ
= − h

r2 + h2
dλ

dσ

dθ

dτ
= ± U(σ)√

r2 + h2
. (18)

As the right-hand side of the first equation in (18) is independent of τ, we have that
∂2θ

∂σ∂τ = 0, and moreover,
∂

∂σ

(
± U(σ)√

r2 + h2

)
= 0, (19)

and since U(σ) ̸= 0, there is a positive constant m such that:

U(σ)√
r2 + h2

=
1
m

̸= 0. (20)

Note that this assumption automatically implies that U(σ) is an increasing function.
From (20), we see that

m2(U(σ))2 = r2 + h2 (21)

which determines the function r(σ). Moreover, by differentiating this equation, we obtain

2m2U(σ)
dU
dσ

= 2r
dr
dσ

.

Note that from (15), it follows that dr
dσ > 0, and further, from (3), we have r(σ) > 0. By

taking the square of (3) and by substituting r2 from (21), we obtain the following ODE:(
dr
dσ

)2
=

m4(U(σ))2

m2(U(σ))2 − h2

(
dU
dσ

)2
. (22)

Further, we have:

dλ2 =
r2 + h2

r2 (dσ2 − dr2) =
m2(U(σ))2

m2(U(σ))2 − h2

(
1 −

(
dr
dσ

)2
)

dσ2

=
m2(U(σ))2

(m2(U(σ))2 − h2)2

(
m2(U(σ))2 − h2 − m4(U(σ))2

(
dU
dσ

)2
)

dσ2,

which determines the function λ(σ).
Finally, the second equation in (17) transforms to:

dθ = ± 1
m

dτ − h
r2 + h2 dλ.
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Hence, we obtain:

r(σ) =
√

m2(U(σ))2 − h2,

θ(σ, τ) = ϵ τ
m − ϵλ

h
m
∫ √

m2(U(σ))2
(

1−m2( dU
dσ )

2)−h2

U(σ)(m2(U(σ))2−h2)
dσ,

λ(σ) = ϵλ

∫ mU(σ)
m2(U(σ))2−h2

√
m2(U(σ))2

(
1 − m2

(
dU
dσ

)2
)
− h2dσ,

(23)

where ϵ, ϵλ ∈ {−1, 1}.
Now, let U(σ) be any particular increasing positive function. Let us consider the

family of helicoidal surfaces [U] that we obtain by substituting (23) into (5), for an arbitrary
pitch h ≥ 0 and a positive constant m:

X(h, m)(σ, τ) := (r(σ) cos θ(σ, τ), r(σ) sin θ(σ, τ), λ(σ) + hθ(σ, τ)). (24)

Since sgn dr
dσ = 1, we have ϵλ = sgn dλ

dr sgn dr
dσ = sgn dλ

dr , where, of course, sgn dλ
dr

determines if λ(r) in (5) is a locally increasing or decreasing function. By taking the
isometry J : (x, y, z) 7→ (x,−y,−z) of the space R3, we obtain that J(X) is determined by
functions r̃ = r, θ̃ = −θ, and λ̃ = −λ, such that λ̃

dσ = − dλ
dσ , so we may take it that ϵλ = 1.

The local coordinate vector fields of X(m)(σ, τ) are given by:

X(h, m)σ = (r′ cos θ − r sin θ
dθ

dσ
, r′ sin θ + r cos

dθ

dσ
, λ′ + h

dθ

dσ
),

X(h, m)τ =
dθ

dτ
(−r sin θ, r cos θ, h),

so the coefficients of the first fundamental form of X(h, m)(σ, τ) are:

E = (r′)2 + (λ′)2 − (r2 + h2)(
dθ

dσ
)2 = (r′)2 +

r2(λ′)2

r2 + h2

=
m4(U(σ))2(U′(σ)2)

m2(U(σ))2 − h2 +
r2 − m4(U(σ))2(U′(σ))2

r2 = 1,

F =
dθ

dτ
(r2 dθ

dσ
+ h(λ′ + h

dθ

dσ
)) =

dθ

dτ
(

dθ

dσ
(h2 + r2) + hλ′) =

dθ

dτ
(−hλ′ + hλ′) = 0,

G = (
dθ

dτ
)2(r2 + h2) = (U(σ))2.

We deduce that all elements of the family [U] have the same first fundamental form
given by (16), and therefore, the helicoidal surface H(r, θ) (which is also an element of
this family, for m = 1 and h = h0) is locally isometric to any element of [U], which proves
the statement.
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Remark 2. By straightforward computation, we obtain the unit normal vector field, as well as the
coefficients of the second fundamental form for elements of Bour’s family [U]:

n(h, m)(σ, τ) =
1

mU
(hr′ sin θ − λ′r cos θ,−λ′r sin θ − hr′ cos θ, rr′),

e =
−m4(U(σ))3U′′(σ) + h2

m2(U(σ))2
√

m2(U(σ))2(1 − m2(U′(σ))2)− h2
,

f = −ϵ
h

m2U(σ)
,

g =
r2λ′( dθ

dτ )
2

mU(σ)
=

√
m2(U(σ))2(1 − m2( dU

dσ )
2)− h2

m2 . (25)

Note that, although the metrics of the elements of Bour’s family are independent of the
parameters m and h, the second fundamental form, and hence, the mean curvature, is not.

We may also ask the question of the regularity of elements in a Bour’s family. We note
that n(h, m) = 0 for r′ = λ′ = 0 or r = 0. In both cases, r′ = 0, meaning that (5) is not
a parameterization of a surface. Recall that we obtained the parameterization (5) by excluding from
our consideration the case of the cylindrical surfaces, which may be included through the limit
process, which we will see later.

Example 1. Let us regard the right helicoid, given by

H(r, θ) = (r cos θ, r sin θ, θ), (r, θ) ∈ (0, 4)× (0, 2π),

By taking this parameterization into (14), we obtain that, via Bour’s isometry, it is isometric to
the catenoid, as a rotational surface

R(r, θ) =
(√

r2 + 1 cos θ,
√

r2 + 1 sin θ, arsinh r
)

.

Note that the right helicoid is already parameterized by natural parameters and that its metric
is induced by the function U(σ) =

√
σ2 + 1. By setting m = 1 and after integration in (23), we

see that for any h ∈ [0, 1), we have:

r(σ) =
√

σ2 + 1 − h2,

θ(σ, τ) = τ − arctan
(

hσ√
1 − h2

√
1 + σ2

)
,

λ(σ) =
√

1 − h2 arsinh σ + h arctan
(

hσ√
1 − h2

√
1 + σ2

)
.

By interpreting the pitch of the family’s element as time, we may obtain another isometric
deformation of the right helicoid to the catenoid; see Figure 2.
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Figure 2. Isometric deformation of right helicoid’s Bour’s family. The starting point of the deformation
is a catenoid at the moment h = 0 followed by helicoidal surfaces at moments h = 0.2, h = 0.5,
h = 0.7, h = 0.95 and, in conclusion, the right helicoid at the moment h = 1.

The examples of the rotational surfaces corresponding to particular helicoidal surfaces
via Bour’s isometry are given in the Figures 3 and 4.
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Figure 3. Right helicoid and catenoid are isometric via Bour’s isometry.

Figure 4. Helicoidal surface H(r, θ) for λ(r) = r and h0 = 1, where (r, θ) ∈ (0, 2)× (0, 2π) and the
rotational surface isometric to it via Bour’s isometry. Helix r = 1 and its image via Bour’s isometry
are highlighted.

4. Helicoidal CMC Surfaces

Although the elements of Bour’s family in general do not have the same, let alone
constant, mean curvature, the main benefit of the existence of Bour’s family is in effective
extrapolation of helicoidal CMC surfaces from it. Since we know the coefficients of the
first and the second fundamental form of the Bour’s family elements, the next claim
follows directly.
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Theorem 3. The helicoidal surface of Bour’s family [U], with the pitch h and constant m, has
a constant mean curvature H if and only if it satisfies the following ODE:

−2H
√

m2(U(σ))2(1 − m2(U′(σ))2)− h2 = m2U(σ)U′′(σ)− 1 + m2(U′(σ))2. (26)

For non-negative functions,

x(σ) := mU(σ), y(σ) :=
√
(x(σ))2 − (x(σ))2(x′(σ))2 − h2, (27)

Equation (26) reduces to:

−2Hy(σ) = x(σ)x′′(σ)− 1 + (x′(σ))2.

By differentiating the second equation in (27), we obtain that y
x

dy
dx = 1 −

(
dx
dσ

)2
− xx′′,

which further reduces (26) to y = 0 or 2Hxdx = dy with the solution

y = Hx2 + a, y ≥ 0, a ∈ R. (28)

Let us find minimal helicoidal surfaces. From H = 0, we obtain that y = a, a ≥ 0.
From (27), we have

m2U(σ)U′(σ) =
√

m2(U(σ))2 − a2 − h2. (29)

By substituting f (σ) := m2(U(σ))2 − a2 − h2, we straightforwardly obtain
f (σ) = (σ + D)2, D ∈ R and by possible translation in the domain of σ, we may take
D = 0.

Now, by taking (23), we see that in the case of a = 0, we obtain helicoids

X(σ, τ) =
(

σ cos
( ϵτ

m

)
, σ sin

( ϵτ

m

)
, ϵh

τ

m

)
. (30)

In the case that a ̸= 0, we obtain that r(σ) =
√

σ2 + a2 and up to a constant

λ(σ) = a ln(σ +
√

σ2 + h2 + a2) + h arctan(
hσ

a
√

σ2 + h2 + a2
),

θ(σ, τ) = ϵ
τ

m
− arctan(

hσ

a
√

σ2 + h2 + a2
).

Hence, we obtain the surfaces

X(σ, τ) = (
a
√

σ2+h2+a2 cos ϵτ
m +hσ sin ϵτ

m√
a2+h2 , a

√
σ2+h2+a2 sin ϵτ

m −hσ cos ϵτ
m√

a2+h2 ,

ϵhτ
m + a ln(σ +

√
σ2 + h2 + a2));

see also [3].
We restrain now to the case where H ̸= 0. Inputting (28) into (27) gives us an ODE for

the function x(σ):
(Hx2 + a)2 = x2 − x2(x′)2 − h2.

Substitution of z(σ) := (x(σ))2 and the fact that x(σ) is positive and increasing reduce
it to an easily solvable separable first-order ODE:

z′ = 2
√
−H2z2 + (1 − 2aH)z − a2 − h2. (31)



Axioms 2024, 13, 457 13 of 20

A necessary condition for the solvability of the previous ODE is a strict negativity of
the discriminant of the quadratic trinomial by z on the right side, which reduces to

1 − 4aH − 4H2h2 > 0. (32)

A direct integration of the latter equation yields:

σ + c =
1
2

∫ dz√
−(H2z2 + (2aH − 1)z)− (a2 + h2)

=
|H|√

1 − 4aH − 4H2h2

∫ (
1 −

(
2H2z + 2aH − 1√
1 − 4aH − 4H2h2

)2)− 1
2

dz.

so we obtain, up to a constant:

σ =
1

2|H| arcsin
(

2H2z + 2aH − 1√
1 − 4aH − 4H2h2

)
. (33)

For the sake of brevity, we may now introduce a strictly positive constant

B :=
√

1 − 4aH − 4H2h2. (34)

Replacing z with m2(U(σ))2 in (33) provides the following expression for U(σ) dependent
on a, m, and h:

(U(σ))2 =
1 − 2aH + B sin(2|H|σ)

2m2H2 , U(σ)U′(σ) =
B

2m2|H| cos(2|H|σ), (35)

and since from (34), we have that 2aH = 1
2 (1 − B2 − 4H2h2), we straightforwardly obtain

from (23):

r(σ) =
1

2|H|

√
1 + 2B sin(2|H|σ) + B2,

θ(σ, τ) = ϵ
τ

m
− 4H2h

∫ |1 + B sin(2|H|σ)|√
1 + B2 + 2B sin(2|H|σ) + 4H2h2(1 + 2B sin(2|H|σ) + B2)

dσ,

λ(σ) =
∫ |1 + B sin(2|H|σ)|

√
1 + B2 + 2B sin(2|H|σ) + 4H2h2

1 + 2B sin(2|H|σ) + B2 dσ.

Remark 3. Note that in the limit case when B goes to zero, we obtain that r(σ) = 1
2H = const.,

i.e., the surface is a cylinder. Hence, the cylinder and its Bour’s family may be considered as a limit
case of Bour’s theorem.

Note that, by allowing h to take negative values, we may take it that ϵ = 1.
Previous calculations as well as the following version of the theorem by Lawson and

the preceding lemma had the key role in the classification of helicoidal CMC surfaces in the
paper [2].

Theorem 4. (Lawson) Let simply connected CMC surface M be given by immersion f : Ω → R3,
where Ω ⊂ R2 is a domain. Then, there exists a differentiable 2π− periodic family of surfaces
fϕ : Ω → R3, ϕ ∈ [0, 2π] all of which are isometric to M and all with the same mean curvature as
M, where f0 = f . Also, the family in question is unique up to an isometry of Euclidean space R3.

The proof of the previous claim can be found in [9], where it is stated in a more general
form than required here.
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Let a, h, and m be defined in terms of new parameters a0 and ϕ and H ̸= 0, with the
condition that 4a0H > −1, in the following way:

a := − a0 cos ϕ
1+2a0 H(1−cos ϕ)

,

h := a0 sin ϕ
1+2a0 H(1−cos ϕ)

,

m :=
√

1
1+2a0 H(1−cos ϕ)

.

(36)

Then, from the expression for B, we straightforwardly obtain:

B(a0, ϕ) =

√
1 + 4a0H

1 + 2a0H(1 − cos ϕ)
. (37)

For the particular values a = −a0, h = 0, and m = 1, i.e., ϕ = 0 in (36), we obtain
a Delauney’s surface with the constant mean curvature H ̸= 0 that belongs to the Bour’s
family [U](a, h, m), which we shall denote by R(a0).

Lemma 1. Let a0 ∈ R and ϕ ∈ [0, 2π] be arbitrary and a, h, and m be defined by (36). Then:
(a) For every ϕ ∈ [0, 2π]

U(a, h, m) = U(−a0, 0, 1), (38)

that is, for every Delauney’s surface R(a0) defined by (23), there exists a one-parameter family of
helicoidal CMC surfaces, all with the same mean curvature H, and that family is exactly the Lawson
family of the surface R(a0). (b) For an arbitrary helicoidal CMC surface M generated by (23), there
exists a Delauney surface R(a0) and a real number ϕ ∈ [0, 2π] such that M is an element of the
Lawson family of the surface R(a0).

Proof. (a) Straightforwardly from (35) and by using (37), we get:

U2(a, h, m) =
1 + 2a0H +

√
1 + 4a0H sin(2|H|σ)
2H2 = U2(−a0, 0, 1),

so (38) is valid. By continuous transformation of ϕ ∈ [0, 2π] in (36), we obtain a family of
helicoidal surfaces with the same constant mean curvature H, all isometric to R(a0) and
including R(a0). From the uniqueness of the Lawson family of the surface R(a0), we see
that this part of the claim is true. (b) We now start with an arbitrary helicoidal CMC surface
with the mean curvature H. It is an element of some Bour’s family [U](a, h, m). The goal is
to find a Delauney surface R(a0) with the mean curvature H and an isometric deformation
such that the helicoidal surface we started with is generated, at some moment ϕ ∈ [0, 2π]
of that deformation. In other words, we want to express ϕ and a0 in terms of a, h, and m.
Coefficients of the second fundamental form of the helicoidal surfaces U[a, h, m] are

e = 1
x2y (h

2 − x3x′′) = H − a
m2U2 ,

f = − h
m2U

,

g = 1
m2 (a + H m2 U2

) = a
m2 + HU2.

(39)

The metric of the surface R(a0) is induced by U(−a0, 0, 1), such that U = U, because all
surfaces that appear during isometric deformation must have the same metric. Let e0, f0 = 0
and g0 be the coefficients of the second fundamental form of R(a0). Reparameterization
dσ = Udp reduces its first fundamental form (16) to

ds2 = U2(dp2 + dτ2),
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so the surface is parameterized by isothermal parameters. From the Lawson theorem, we
obtain the family corresponding to R(a0) that depends on a0 and ϕ ∈ [0, 2π]. Straight-
forwardly, the coefficients of the second fundamental form of its elements are:

e = H + cos ϕ(e0 − H),

f = U
2 sin ϕ( g0

U2 − e0),

g = HU2 + cos ϕ(g0 − HU2).

(40)

By comparing (40) and (39) and since all elements of the family are isometric, i.e., U = U,
we obtain

e0 =− a
U2 m2 cos ϕ

+ H,

g0 =HU2 +
a

m2 cos ϕ
,

h =− m2U2

2
sin ϕ(

g0

U2 − e0︸ ︷︷ ︸
2 a

m2U2 cos ϕ

) = −a
sin ϕ

cos ϕ
.

Now, let us regard the Delauney’s surface R(a0) which is obtained in Lawson’s
isometric deformation for ϕ = 0, with a = −a0, h = 0, and m = 1. From (36), we
further obtain that:

a = −a0 cos ϕ m2.

Now, if we take ϕ and a0 as h = −a sin ϕ
cos ϕ ,

a0 = − a
cos ϕm2 ,

(41)

a straightforward computation shows that for a0, ϕ, a, h, and m, the relations (36) are satisfied.
Hence, if we take a := a, h := h, and m := m, we obtain the Lawson’s family of

helicoidal CMC surfaces with the mean curvature H ̸= 0 whose starting point is the
Delauney’s surface R(a0), where a0 is defined as (41), which ends the proof.

Let B0 be the value of B at the moment ϕ = 0:

B0 :=
√

1 + 4a0H. (42)

Then, (36) and(37) reduce to:

m2 =
1

1 + 2H (B2
0−1)(1−cos ϕ)

4H

=
2

2 +
(

B2
0 − 1

)
(1 − cos ϕ)

,

h =

(
B2

0 − 1
)

sin ϕ

4H + 2H
(

B2
0 − 1

)
(1 − cos ϕ)

,

B =
2B0

2 +
(

B2
0 − 1

)
(1 − cos ϕ)

. (43)

We noted that in the each Bour’s family [U](a, m, h), there exists one Delauney’s
surface which we may deform isometrically to a helicoidal surface by fixing m = 1 and
varying the pitch h. Previous claims prove that via isometric deformation of the Delauney’s
surface R(a0) through the Lawson’s family, we obtain helicoidal CMC surfaces that share
the same mean curvature with the original Delauney’s surface. Moreover, for any mean
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curvature H ̸= 0, a helicoidal CMC surface of that curvature is generated by an isometric
deformation of some Delauney’s surface of the same mean curvature.

By taking unduloids, nodoids, and as a boundary case, a cylinder with a fixed mean
curvature H ̸= 0, we may regard parameter ϕ ∈ [0, 2π] as the time, for particular choices
of the constant B0 in (43), and continuously shift it, which provides us with interesting
examples of helicoidal CMC surfaces, all with the same mean curvature H; see Figures 5–8.
The isometric deformation in the case of a sphere would be of no interest, as it stays in the
same position, the starting sphere for every moment ϕ ∈ [0, 2π].

Figure 5. We consider the case of the cylinder as the limit case where 4a0H = −1. The figure shows
the isometric deformation of the cylindric surface R(−0.5) with the mean curvature H = 1

2 , for
(σ, τ) ∈ (0, 5)× (0, 2π). Other moments of deformation shown in the figure are at ϕ = 15π

8 , ϕ = 7π
4 ,

ϕ = 3π
2 , ϕ = 11π

8 , and ϕ = 9π
8 , respectively.

For further applications of this topic, specifically in the area of computer graphics, it is
of interest to fully describe the algorithmic manner in which helicoidal CMC surfaces are
generated through the deformation of Delauney’s surfaces (that is, how Figures 5–8 are
created and how many similar figures may be created).

We start with a fixed mean curvature H and (23) and the Delauney surfaces of
that mean curvature which we want to deform (with parameter B0, i.e., a0 via (42)).
By continuous movement of parameter ϕ from 0 to 2π (which continuously changes
parameters m, B, and h in formulas (43)) and substituting those values into (24), we obtain
new helicoidal surfaces, all with the same mean curvature H. In the images in this paper,
we have restricted ourselves to choices ϵ = ϵλ = 1 in (23) and to the time intervals for ϕ
where the pitch h is positive, albeit the images in the time interval for ϕ where the pitch h is
negative are basically the same up to an isometry of R3.
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It would be of interest to see if it is possible to visualize these deformations through
real-time animations in some programs, but major problems we encounter here lie in the
great time consumption even for creating one surface (frame in the moment of time ϕ),
which arises due to the complexity of the integrals from definitions of functions θ(σ, τ) and
λ(σ) as well as singularities in parameterizations which may occur for certain values of ϕ in
certain cases, as described in [2]. So at the moment, we find that the best way of visualizing
these deformations is through the frame-by-frame method, as described here, and we
provide Mathematica codes (the link to the codes is here: https://github.com/Fica991
/Visualisation-of-isometric-deformations-of-helicoidal-CMC-surfaces-Mathematica-codes
(accessed on 1 July 2024)) for all the figures in this paper.

Figure 6. Isometric deformation of the unduloid R(−0.42) with H = 1
2 , for (σ, τ) ∈ (0, 15)× (0, 2π).

Other moments of the deformation shown in the figure are at ϕ = 15π
8 , ϕ = 7π

4 , ϕ = 13π
8 , ϕ = 11π

8 ,
and ϕ = 5π

4 , respectively.

https://github.com/Fica991/Visualisation-of-isometric-deformations-of-helicoidal-CMC-surfaces-Mathematica-codes
https://github.com/Fica991/Visualisation-of-isometric-deformations-of-helicoidal-CMC-surfaces-Mathematica-codes
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Figure 7. Isometric deformation of the unduloid R(−0.375) with the mean curvature H = 1
2 ,

parameterized by (σ, τ) ∈ (0, 15)× (0, 4π). Other moments of the deformation shown in figure are
at ϕ = 7π

4 , ϕ = 13π
8 , ϕ = 11π

8 , ϕ = 9π
8 and ϕ = π, respectively.
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Figure 8. Isometric deformation of the nodoid R(0.625) with the mean curvature H = 1
2 , for

(σ, τ) ∈ (0, 15)× (0, 2π). Other moments of the deformation showed in figure are at ϕ = π
16 , ϕ = π

8 ,
ϕ = π

4 , ϕ = 3π
8 and ϕ = π

2 , respectively.
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