Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1300
DC FieldValueLanguage
dc.contributor.authorAnđelić, Milicaen_US
dc.contributor.authorKoledin, Tamaraen_US
dc.contributor.authorStanić, Zoranen_US
dc.contributor.authorWang, J.en_US
dc.date.accessioned2024-06-12T15:59:26Z-
dc.date.available2024-06-12T15:59:26Z-
dc.date.issued2023-01-01-
dc.identifier.issn09728600-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1300-
dc.descriptionThis is an original manuscript of an article published by Taylor and Francis in AKCE International Journal of Graphs and Combinatorics in 2023, available at: <a href="https://doi.org/10.1080/09728600.2023.2236178">https://doi.org/10.1080/09728600.2023.2236178</a>en_US
dc.description.abstractGiven a signed graph (Formula presented.), let (Formula presented.) and (Formula presented.) be its standard adjacency matrix and the diagonal matrix of net-degrees, respectively. The net Laplacian matrix of (Formula presented.) is defined as (Formula presented.). In this paper we investigate signed graphs whose net Laplacian spectrum consists entirely of integers. The focus is mainly on the two extreme cases, the one in which all eigenvalues of (Formula presented.) are simple and the other in which (Formula presented.) has 2 or 3 (distinct) eigenvalues. Both cases include structure theorems, degree constraints and particular constructions of new examples. Several applications in the framework of control theory are reported.en_US
dc.language.isoenen_US
dc.publisherTaylor and Francisen_US
dc.relation.ispartofAKCE International Journal of Graphs and Combinatoricsen_US
dc.rightsAttribution-NonCommercial 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/us/*
dc.subjectcontrollable signed graphen_US
dc.subjectgraph producten_US
dc.subjectjoinen_US
dc.subjectnet Laplacian matrixen_US
dc.subjectNet-degreeen_US
dc.subjectregular signed graphen_US
dc.subjectsigned cographen_US
dc.titleSigned graphs with integral net Laplacian spectrumen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/09728600.2023.2236178-
dc.identifier.scopus2-s2.0-85165629735-
dc.identifier.isi001033840800001-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85165629735-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.issn0972-8600en_US
dc.description.rankM22en_US
dc.relation.firstpage177en_US
dc.relation.lastpage184en_US
dc.relation.volume20en_US
dc.relation.issue2en_US
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeArticle-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Files in This Item:
File Description SizeFormat
SI_04_007_Authors.pdf520.03 kBAdobe PDF
View/Open
Show simple item record

Page view(s)

26
checked on Nov 15, 2024

Download(s)

4
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons