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ABSTRACT
Given a signed graph Ġ, let AĠ and D±

Ġ
be its standard adjacency matrix and the

diagonal matrix of net-degrees, respectively. The net Laplacian matrix of Ġ is defined
as NĠ = D±

Ġ
− AĠ. In this paper we investigate signed graphs whose net Laplacian

spectrum consists entirely of integers. The focus is mainly on the two extreme cases,
the one in which all eigenvalues of NĠ are simple and the other in which NĠ has 2 or
3 (distinct) eigenvalues. Both cases include structure theorems, degree constraints
and particular constructions of new examples. Several applications in the framework
of control theory are reported.
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1. Introduction

A signed graph Ġ is a pair (G, σ), where G = (V,E) is an (unsigned) graph, called
the underlying graph, and σ : E −→ {−1,+1} is the sign function. The edge set of a
signed graph is composed of subsets of positive and negative edges. In this paper we
interpret a graph as a signed graph whose sign function gives +1 to all the edges. We
denote the number of vertices (also known as the order) of a signed graph by n. In
literature, one may find a slightly different notation with Γ or Σ for the signed graph.
A dot-notation appears in papers concerning spectra, where the absence of a dot refers
to the underlying graph simultaneously interpreted as a signed graph with all-positive
signature.

Many familiar notions about graphs extend directly to the domain of signed graphs.
For example, the degree du of a vertex u of Ġ is its degree in G. Similarly, a signed graph
is regular if its underlying graph is regular. On the other hand, there are some notions
exclusive to signed graphs. The positive degree d+

u is the number of positive neighbours
of u (i.e. those adjacent to u by a positive edge). In a similar way, we define the negative
degree d−u . The net-degree of u is defined as d±u = d+

u − d−u . A signed graph is said to be
net-regular if the net-degree, considered as a function on the vertex set, is constant.
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The adjacency matrix AĠ of Ġ is obtained from the standard adjacency matrix of G
by replacing +1 with −1 whenever the corresponding edge is negative. The Laplacian
matrix is defined as LĠ = DĠ−AĠ, where DĠ is the diagonal matrix of vertex degrees.

The net Laplacian matrix is defined as NĠ = D±
Ġ
− AĠ, where D±

Ġ
is the diagonal

matrix of net-degrees. The matrices AĠ and LĠ have received a great deal of attention in
the theory of spectra of signed graphs. On the contrary, the net Laplacian appears very
sporadically, say in [7, 13, 15, 16, 17]. The authors of [7] highlighted its significance in the
study of controllability of undirected signed graphs. To the best of our knowledge, the
first appearance of the term ‘net Laplacian’ is recorded in [17]. Evidently, in particular
case of unsigned graphs the net Laplacian coincides with the Laplacian.

We denote the eigenvalues (with possible repetitions) of NĠ by ν1, ν2, . . . , νn. The
eigenvalues, the spectrum and the eigenvectors of NĠ are simultaneously considered
as the net Laplacian eigenvalues, the net Laplacian spectrum and the net Laplacian
eigenvectors of Ġ, but to ease language, except in the formulations of the statements,
we suppress the prefix ‘net Laplacian’ from the previous terminology. In addition, we
write ‘Ġ has k eigenvalues’ to mean that Ġ has k distinct eigenvalues. It is not difficult
to see that 0 is an eigenvalue of every signed graph with the all-1 eigenvector.

We say that the spectrum of Ġ is integral if it consists entirely of integers. When this
occurs, we also say that Ġ is integral. Such signed graphs are subject of the research
reported in this paper. In particular, we consider the case in which Ġ has no repeated
eigenvalues and its counterpart in which the number of eigenvalues of Ġ is extremely
small; precisely, equal to 2 or 3. In both cases we establish some theoretical results con-
cerning the structure of signed graphs under consideration, and then provide particular
constructions. An application of integral signed graphs without repeated eigenvalues in
the framework of control theory is investigated.

The paper is organized as follows. Section 2 contains some additional terminology
and notation, along with some known results. In particular, one can find definition of
the class of integral signed graphs called ∇-cographs and the particular subclass of
∇-threshold graphs. In Section 3 we investigate the spectrum of ∇-cographs and give
constructions of those that avoid repeated eigenvalues. All connected signed graphs with
2 eigenvalues and at most 8 vertices are reported in Section 4; all of them are integral.
Structural examinations of certain signed graphs with 2 or 3 eigenvalues are given in
Section 5. Finally, some applications in control theory are separated in Section 6.

2. Preparatory

We use j, 0, J and I to denote the all-1 vector, the all-0 vector, the all-1 matrix and
the identity matrix, respectively. The length or the size may be given in the subscript.
We write 〈x,y〉 to denote the Euclidean inner product of the vectors x and y. For the
signed graphs Ġ1 and Ġ2, Ġ1 ∪ Ġ2 denotes their disjoint union, and kĠ1 the disjoint
union of k copies of Ġ1. The negation −Ġ1 of Ġ1 is obtained by reversing the sign of
every edge of Ġ1. Evidently, −NĠ1

acts as the net Laplacian matrix of −Ġ1, and the
spectrum of −Ġ1 is obtained by negating every eigenvalue of Ġ1. Finally, if Ġ1 and
Ġ2 are isomorphic, we write Ġ1 ∼= Ġ2. For the undefined notions, we refer the reader
to [18].

The join G1∇G2 of (unsigned) graphsG1, G2 is obtained by inserting an edge between
every vertex of Ġ1 and every vertex of Ġ2. In the framework of signed graphs we have
similar definitions. For the signed graphs Ġ1, Ġ2, the positive join (resp. negative join)
Ġ1∇+Ġ2 (Ġ1∇−Ġ2) is obtained by inserting a positive (negative) edge between every
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vertex of Ġ1 and every vertex of Ġ2.
We recall from [10] that an unsigned cograph is iteratively defined in the following

way: K1 is a cograph; if G1, G2 are cographs, then G1∇G2 is a cograph. Alternatively,
a cograph is a P4-free graph. Similarly, a threshold graph G ∼= G(b) is defined on
the basis of its binary generating sequence b = (b1, b2, . . . , bn) in the following way:
G1 ∼= G1(b1) ∼= K1; if Gi−1(b1, b2, . . . , bi−1) is already constructed, then Gi(b1, b2, . . . , bi)
is formed by adding a vertex non-adjacent to the vertices of Gi−1 if bi = 0 or by adding
a vertex adjacent to all the vertices of Gi−1 if bi = 1. Alternatively, a threshold graph is
a {2K2, P4, C4}-free graph, and so every threshold graph is a cograph. For more details
see [9].

In the framework of signed graphs we may define a signed cograph (resp. signed
threshold graph) as a signed graph whose underlying graph is a cograph (threshold
graph). However, in this study we are more interested in particular classes defined in
the following way. A ∇-cograph is a signed graph defined in the following way: K1
is a ∇-cograph; if Ġ1, Ġ2 are ∇-cographs, then Ġ1 ∪ Ġ2, Ġ1∇+Ġ2 and G1∇−G2 are
∇-cographs. Similarly, a ∇-threshold graph is defined on the basis of its (0, 1,−1)-
generating sequence b = (b1, b2, . . . , bn) as follows: Ġ1 ∼= Ġ1(b1) ∼= K1 is a ∇-thereshold
graph and if Ġi−1(b1, b2, . . . , bi−1) is already constructed, then Ġi(b1, b2, . . . , bi) is formed
by adding a vertex non-adjacent to the vertices of Ġi−1 if bi = 0, or adding a vertex
joined by a positive edge to all the vertices of Ġi−1 if bi = 1, or adding a vertex joined by
a negative edge to all the vertices of Ġi−1 if bi = −1. Observe that a ∇-threshold graph
does not depend on the choice for b1 and it is uniquely determined by the remainder of
b.

Remark 1. Evidently, every ∇-cograph is a signed cograph and every ∇-threshold
graph is a signed threshold graph (and consequently, it is a signed cograph). The prefix
∇ suggests that the sign of every edge is determined by the positive or the negative join
operation.

In this paper we will frequently use the following result of [15]. It is a ‘signed’ gener-
alization of the known result obtained by Merris [10] (see also [11]).

Theorem 2.1. [15, Theorem 3] Let Ġ1 and Ġ2 be signed graphs with net Lapla-
cian eigenvalues ν1(Ġ1), ν2(Ġ1), . . . , νn1(Ġ1) = 0 and ν1(Ġ2), ν2(Ġ2), . . . , νn2(Ġ2) =
0, respectively, and let ` be a fixed element of {+,−}. The net Laplacian
eigenvalues of Ġ1∇`Ġ2 are ν1(Ġ1)`n2, ν2(Ġ1)`n2, . . . , νn1−1(Ġ1)`n2, ν1(Ġ2)`n1,
ν2(Ġ2)`n1, . . . , νn2−1(Ġ2)`n1, `(n1 + n2) and 0.

If x is a net Laplacian eigenvector of Ġ1 orthogonal to j and associated with a net
Laplacian eigenvalue ν, then its extension defined to be zero on each vertex of Ġ2 is
a net Laplacian eigenvector of Ġ1∇`Ġ2 associated with ν`n2, and similarly for the net
eigenvectors of Ġ1∇`Ġ2 that arise from those of Ġ2. The net Laplacian eigenvalue
`(n1 + n2) is associated with the net Laplacian eigenvector with weight −n2 on each
vertex of Ġ1 and n1 on each vertex of Ġ2.

As observed in [14], an immediate consequence of the previous theorem is the fact
that the largest eigenvalue of a signed graph Ġ with n vertices does not exceed n, and
it attains n if and only if Ġ is a positive join of two signed graphs.

We conclude this section with a simple corollary treating ∇-thresholds graphs.
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Corollary 2.2. Let Ġ be a ∇-threshold graph generated by the sequence

(b1, b2, . . . , bk, 0, 0, . . . , 0︸ ︷︷ ︸
t

),

with bk 6= 0. For t = 0, Ġ is a positive (for bk = 1) or a negative (for bk = −1) join and
its net Laplacian spectrum is formed as in Theorem 2.1. For t > 0, Ġ is a disjoint union
of a connected ∇-threshold graph Ġ′ generated by (b1, b2, . . . , bk) and the set of t isolated
vertices. The net Laplacian spectrum of Ġ consists of the net Laplacian eigenvalues of
Ġ′ obtained as in Theorem 2.1 and t zeroes.

Proof. For t = 0, the result follows immediately from definition of a ∇-threshold graph
and Theorem 2.1.

For t > 0, we have Ġ ∼= Ġ′ ∪ tK1, and thus the spectrum of Ġ consists of the
eigenvalues of Ġ′ and the eigenvalues of tK1 (zero with multiplicity t). In addition, bk 6= 0
implies that Ġ′ is connected. Moreover, it is a positive or a negative join (depending on
the sign of bk), and so its eigenvalues are obtained as in Theorem 2.1.

3. Spectrum of ∇-cographs

As we said in the first section, the spectrum of the net Laplacian matrix is studied in
just few references. Some particular results (including small structural perturbations,
relations with the spectrum of the standard Laplacian matrix and certain operations
on signed graphs) can be found in [15, 16]. In this section we establish some spectral
properties of∇-cographs and the subclass of∇-threshold graphs. We devote a particular
attention to those that have no repeated eigenvalues.

First, every ∇-cograph (as well as every ∇-threshold graph) is integral. To see this,
one may suppose that Ġ is the smallest connected non-integral ∇-cograph and then use
Theorem 2.1 to show that it contains a connected ∇-cograph with smaller order which
must be non-integral. In what follows we prove that the class of all ∇-threshold graphs
does not contain two that share the same spectrum.

Theorem 3.1. No two ∇-threshold graphs have the same net Laplacian spectrum.

Proof. Assume for the sake of contradiction that Ġ1, Ġ2 make a smallest pair (relative
to the number of vertices) of ∇-threshold graphs with the same spectrum. Let n be
their common order.

Let first Ġ1 be disconnected. Hence, we have Ġ1 ∼= Ġ′1∪c1K1, where Ġ′1 is a connected
∇-threshold graph with k ≥ 2 vertices. Without loss of generality, we may suppose that
Ġ′1 is a positive join, and in this case k is the largest eigenvalue of Ġ′1, by Corollary 2.2.
In addition, the least eigenvalue of Ġ′1 is greater than −k. Consequently, we have the
same situation for Ġ2: its largest eigenvalue is k and its spectrum is bounded from
below by −k+ 1. Since k < n, we get that Ġ2 is disconnected, as well; otherwise, one of
n,−n would appear in its spectrum. Therefore, we have Ġ2 ∼= Ġ′2 ∪ c2K1, where Ġ′2 is a
connected∇-threshold graph. Moreover, k is an eigenvalue of Ġ′2 and its least eigenvalue
is greater than −k (as Ġ1 and Ġ2 share the same spectrum). In other words, Ġ′2 is a
positive join and has k vertices, which implies c1 = c2, which further implies that Ġ′1
and Ġ′2 share the same spectrum, but this contradicts the assumption that Ġ1, Ġ2 make
a smallest such a pair.

Let now Ġ1 be connected and, without loss of generality, let it be a positive join.
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By Corollary 2.2, the order of Ġ1 appears as a common eigenvalue of Ġ1 and Ġ2,
which implies that Ġ2 is also a positive join. In other words, we have Ġ1 ∼= K1∇+Ġ′1
and Ġ2 ∼= K1∇+Ġ′2 for some ∇-threshold graphs Ġ′1, Ġ′2. If ν1 = n, ν2, . . . , νn = 0
are the common eigenvalues of Ġ1 and Ġ2, then the eigenvalues of Ġ′1 and Ġ′2 are
ν2 − 1, ν3 − 1, . . . , νn−1 − 1 and 0 (by Corollary 2.2, again). In other words, Ġ′1 and
Ġ′2 share the same spectrum, which as before contradicts the initial assumption on
minimality of Ġ1 and Ġ2. This completes the proof.

On the basis of Theorem 2.1 (and Corollary 2.2) we can give a simple algorithm that
computes the eigenvalues and the eigenvectors of a ∇-threshold graph. Its correctness
is inspected directly, by employing the previous results.
Algorithm 1.

INPUT (b1, b2, . . . , bn) \\ (0, 1,−1)-sequence with n ≥ 2.
ν1 = 0;
x1 = j1;
for i = 2 to n

if bi = 0
for j = 1 to i− 2

xj =
(

xj
0

)
;

end for
xi−1 =

(
0i−1

1

)
;

νi = 0;
xi = ji;

end if
if bi = 1

for j = 1 to i− 2
νj = νj + 1;

xj =
(

xj
0

)
;

end for
νi−1 = i; νi = 0;

xi−1 =
(
−ji−1
i− 1

)
; xi = ji;

end if
if bi = −1

for j = 1 to i− 2
νj = νj − 1;

xj =
(

xj
0

)
;

end for
νi−1 = −i; νi = 0;

xi−1 =
(
−ji−1
i− 1

)
; xi = ji;

end if
RETURN (ν1, ν2, . . . νn), (x1,x2, . . . ,xn) \\ Eigenvalues and eigenvectors.

The algorithm contains a linear loop which in each iteration includes an other linear
loop, so the the time complexity is quadratic. We now extend a rooted tree repre-
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sentation of cographs of [5] to ∇-cographs. For a ∇-cograph Ġ, the root and every
interior vertex of the corresponding tree TĠ, called a ∇-cotree, is either of 0-type (cor-
responding to disjoint union), or (+)-type (corresponding to positive join) or (−)-type
(corresponding to negative join). The terminal vertices (leaves) are typeless and each of
them represents itself in Ġ. Unless Ġ consists of an isolated vertex, the root and every
interior vertex have at least two direct successors. Moreover, every non-terminal direct
successor of any vertex v has a type that differs from the type of v. It can be easily
seen that every ∇-cograph has such a rooted representation and that every rooted tree
formed as above represents the unique ∇-cograph. An example is given in Fig. 1; clearly,
the notation for every non-terminal vertex corresponds to its type.

+

0 −

0+ +

−
v1

v2 v3

v4 v5

v6

v7 v8

v6

v7

v8

v1

v4

v5

v2

v3

Ġ TĠ

Figure 1. A ∇-cograph Ġ and its representation TĠ. In Ġ, negative edges are dashed.

One can observe that interchanging (+)-type and (−)-type vertices results in the
negation of the corresponding ∇-cograph.

We now prove the following result.

Lemma 3.2. Every vertex-deleted subgraph of a ∇-cograph (resp. ∇-threshold graph)
is a ∇-cograph (∇-threshold graph).

Proof. Let v be a vertex of a ∇-cograph Ġ. Then v is a terminal vertex in the ∇-cotree
TĠ. If v shares a common direct predecessor with at least 2 terminal vertices, then the
∇-cotree TĠ−v representing Ġ − v is obtained by removing v from TĠ. For otherwise,
TĠ−v is obtained by removing v and its direct predecessor, say u, and inserting and
edge between the direct predecessor and the direct successor of u. The existence of
TĠ−v confirms that Ġ− v is a ∇-cograph.

Vertex-deleted subgraphs of ∇-threshold graphs are considered by employing the fact
that every ∇-threshold graph is a ∇-cograph.

We now consider ∇-cographs without repeated eigenvalues. We start with the follow-
ing result.

Theorem 3.3. Let Ġ be a ∇-cograph without repeated net Laplacian eigenvalues. The
following statements hold true.

(i) Let Ġv be a subgraph determined by a non-terminal vertex v (and its successors)
of TĠ. The non-zero net Laplacian eigenvalues of Ġv are simple. The multiplicity
of zero is at most 2.

(ii) TĠ is a binary tree.
(iii) TĠ has no subtree illustrated in Fig. 2.
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u

v v

Figure 2. A forbidden subtree for Theorem 3.3(iii).

Proof. (i): By virtue of Theorem 2.1, an application of ∪, ∇+ or ∇− operation to two
signed graphs such that one of them has either a repeated non-zero eigenvalue or the
eigenvalue 0 with multiplicity at least 3 results in a signed graph with either a repeated
eigenvalue or 0 with multiplicity at least 3. In particular, if Ġv does not satisfy the
assumptions of (i), then Ġ has a repeated eigenvalue.

(ii): Assume for contradiction that a vertex v of TĠ has at least 3 direct successors.
If v is of 0-type, then the subgraph Ġv (determined by v) has the eigenvalue 0 with
multiplicity at least 3. If v is of some of the remaining types and Ġv has k vertices,
then either k or −k is an eigenvalue with multiplicity at least 2 in Ġv. In both cases
the desired conclusion follows from the previous item.

(iii): If v is of 0-type (briefly, 0) then u ∈ {+,−}. If u is + (resp. −), 2 (−2) has
multiplicity 2 in Ġu, and the result follows from (i). If v is +, then in Ġu the eigenvalue
2 has multiplicity 2 for u being 0, and 0 has multiplicity 3 for u being −, and similarly
for the remaining possibility for v. Again, the result follows from (i).

We proceed with two particular constructions. For the first one, let a (1,−1, 2,−2)-
sequence determine a ∇-cograph in the following way: 1 and −1 have the same roles
as in the similar sequences related to ∇-threshold graphs, while 2 (resp. −2) represents
adding two non-adjacent vertices joined by positive (negative) edges to all the vertices
of the already formed ∇-cograph. In particular, if a generating sequence starts with
either 2 or −2, this means that in the first step we take 2 isolated vertices.

Theorem 3.4. A (1,−1, 2,−2)-sequence generates a ∇-cograph without repeated net
Laplacian eigenvalues if and only if this sequence is

(i) (a, 1,−1, 1,−1, . . . , 1),
(ii) (a, 1,−1, 1,−1, . . . ,−1),

(iii) (b, 1,−1, 1,−1, . . . , 1),
or the negation of some of these sequences, where a ∈ {1,−1}, b ∈ {2,−2}.

Proof. Using Theorem 2.1, we get that the sequences of (i)–(iii) generate the ∇-
cographs with eigenvalues

n, n− 2, . . . , 2, 0,−2, . . . ,−n+ 4,−n+ 2, (1)

n− 2, n− 4, . . . , 1, 0,−3, . . . ,−n+ 2,−n, (2)

and

n, n− 2, . . . , 1, 0,−3, . . . ,−n+ 4,−n+ 2, (3)

respectively. Their negations generate ∇-cographs with negated eigenvalues, which
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proves one implication.
Assume now that Ġ which has no repeated eigenvalues is generated by a sequence

b = (b1, b2, . . . , bn) that differs from the previous ones. In this case, every induced
subgraph generated by (b1, b2, . . . , bi) has no repeated non-zero eigenvalues.

For i ≥ 2 the consecutive entries bi and bi+1 must differ in sign, as otherwise
(b1, b2, . . . , bi+1) would generate a ∇-cograph with a repeated eigenvalue (equal to i+ 1
or −i− 1). Therefore, if b does not contain ±2, then b coincides with (i) or (ii), up to
negation.

Assume further that b contains 2 or −2, and let bi+1, i ≥ 1, be the first occurrence of
±2 in b. According to the previous computation, the sequence (b1, b2, . . . , bi) generates
a ∇-cograph, say Ġi, whose eigenvalues are up to negation given by replacing n with i in
one of (1)–(3). By extending the generating sequence with bi+1 = ±2, we get Ġi+1 with
a repeated non-zero eigenvalue. Indeed, if the spectrum of Ġi is determined by (1), then
bi+1 must differ in sign from bi, and thus bi+1 = −2 which gives −i of multiplicity 2,
and similarly if the spectrum of Ġi is determined by the negation of (1). The remaining
two possibilities ((2) and (3)) are considered in the same way.

It remains to consider the case in which b1 = ±2. Then b2 6= ±2, as otherwise 2 or −2
is a repeated eigenvalue of Ġ2. Thus, b starts with (b, 1,−1, 1,−1, . . .) or its negation.
If bi 6= ±2 for i ≥ 2 then bn = b2, as otherwise 0 has the multiplicity 2 in Ġ. But then b
coincides with (iii). If bi+1 is the first occurrence of ±2, then bi differ in sign, and then
either i or −i has multiplicity 2. This eliminates the last possibility for b and completes
the proof.

Observe that ∇-cographs generated by (1,−1, 2,−2)-sequences are obtained by re-
moving a matching from a complete signed graph. The previous result gives those with-
out repeated eigenvalues.

In what follows we use Si,n to denote the set of all integers from 0 to n excluding
i /∈ {0, n}. By −Si,n we denote the negation of the previous set. We say that a signed
graph without repeated eigenvalues realizes Si,n if its spectrum coincides with Si,n.

The following result gives some particular constructions of ∇-cographs without re-
peated and without negative eigenvalues.

Theorem 3.5. For k, l ≥ 3, let Ḣ1 be a ∇-cograph that realizes −Si,k and Ḣ2 a ∇-
cograph that realizes Sj,l. Then the net Laplacian eigenvalues of Ġ ∼= Ḣ1∇+(K1 ∪ Ḣ2)
are non-negative and simple if and only if i = 1 (and then Ġ realizes Sk+j,k+l+1) or
i = 2, j = 1 (and then Ġ realizes S1,k+l+1).

Proof. The eigenvalues of Ġ are 0, k + l + 1, l, l − 1, . . . , l − k + 1, k, k + 1, . . . , k + l
with l − i+ 1 and k + j removed. For l ≤ k − 1, Ġ contains a repeated zero eigenvalue
or a negative eigenvalue (both arise from l − k + 1). For l ≥ k + 2, the spectrum of Ġ
avoids 1 and 2, which means that it must have at least one repeated eigenvalue.

For l = k, there must be i = 1; otherwise, l is a repeated eigenvalue. Then Ġ obviously
realizes Sk+j,k+l+1.

For l = k+ 1, there must be i = 2 (otherwise, l− 1 is a repeated eigenvalue) and also
j = 1 (otherwise, l is a repeated eigenvalue). Then Ġ realizes S1,k+l+1.

To get some examples we need to define the following operations. Let f1(H) denote
the operation (2K1)∇(K1 ∪ H) applied to an unsigned graph H. Similarly, we denote
f2(H) = K1∇(K2∪H) and f3(H) = K1∇(K1∪H). We also use P1 (resp. P2) to denote
the composition f1 ◦ f2 ◦ f3 (resp. f3 ◦ f1 ◦ f2). We know from [17] that a ∇-cograph
without negative edges realizes S1,k if and only if it is realized by the iterative procedure
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having one of the following forms

• K2 → f1 → P1 → P1 → · · · → P1 or K2 → P1 → P1 → · · · → P1,
• P3 → f1 → P1 → P1 → · · · → P1 or P3 → f2 → f1 → P1 → P1 → · · · → P1,

and it realizes S2,k if and only if it is realized by the iterative procedure having one of
the following forms

• K2 → f3 → P2 → P2 → · · · → P2 or K2 → f1 → f3 → P2 → P2 → · · · → P2,
• P3 → P2 → P2 → · · · → P2 or P3 → f1 → f3 → P2 → P2 → · · · → P2.

These constructions are sufficient for us to establish examples for Theorem 3.5.
Namely, we can take the negation of a cograph that realizes S1,k and any cograph
that realizes Sj,l (here we can also take j ∈ {1, 2}, while for the other possibilities we
refer to [17]) to get a cograph that realizes Sk+j,k+l+j , and similarly for that realizing
S1,k+l+1.

Moreover, Theorem 3.5 enables us to give another example. We proved in Theorem 3.1
that any pair of ∇-threshold graphs differ in spectrum. The reader may recall the
result in the particular case of unsigned graphs stating that every threshold graph is
determined by its Laplacian spectrum (in the sense that there is no graph with the same
Laplacian spectrum) [10]. Naturally, we can ask whether the same holds for ∇-threshold
graphs and the net Laplacian spectrum, and the answer is negative. Namely, we know
from [6, 17] that every ∇-threshold graph that realizes Si,n is generated by either

(1, 1, 0, 1, 0, 1, . . . , 0, 1︸ ︷︷ ︸
2(i−1)

) or (1, 0, 1, 0, 1, . . . , 0, 1︸ ︷︷ ︸
2(i−1)

). (4)

Now, using Theorem 3.5 we can construct a ∇-cograph with the same spectrum. An
example is obtained by taking −Ḣ1 ∼= Ḣ2 ∼= (2K1)∇+(K1 ∪K2) and the ∇-threshold
graph generated by the latter sequence for i = 6. The common spectrum is S6,11.

We further prove that every ∇-threshold graph whose eigenvalues are simple and
non-negative is generated by one of the aforementioned sequences.

Theorem 3.6. If a ∇-threshold graph Ġ generated by a (0, 1,−1)-sequence b =
(b1, b2, . . . , bn) has no repeated net Laplacian eigenvalue and has no negative net Lapla-
cian eigenvalue, then b is one of the sequences of (4).

Proof. We first prove that bi 6= −1, for i ≥ 2. Assume that this is not true and let
bi, i ≥ 2, be the last occurrence of −1 in the generating sequence. In this case, by
Theorem 2.1, there are at least i ones after bi (otherwise, there is a negative eigenvalue
in Ġ). In addition, the entries of (bi+1, bi+2, . . . , bn) alternately take the values of {0, 1}.

Let bj be the ith occurrence of 1 after bi. The ∇-threshold graph Ġj generated by
(b1, b2, . . . , bj) has the eigenvalue 0 of multiplicity 2, as Ġj−1 has the eigenvalue −1.
Therefore, since bj+1 = 0, we deduce that Ġj+1 has the eigenvalue 0 of multiplicity 3,
and then Ġ has a repeated eigenvalue, which is a contradiction.

Now, b1 has an arbitrary value that does not affect the corresponding signed graph,
say b1 = 1 as in (4). It is a matter of routine to verify that bi = bi+1 implies the existence
of a repeated eigenvalue in Ġ, unless i = 1, which leads to the desired result.
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4. Computer search on connected signed graphs with 2 eigenvalues

Here is the data for computer search on connected signed graphs with at most 8 vertices
and 2 eigenvalues of the net Laplacian matrix. One of these eigenvalues is 0, while the
other is an integer whose absolute value does not exceed the number of vertices.

For every order n there is the complete unsigned graph with spectrum {nn−1, 0} (the
exponent stands for the multiplicity). For even order, there is the ∇-threshold graph
Kn/2∇+(−Kn/2) with spectrum {nn/2, 0n/2}. The net Laplacian matrices and spectra
of the remaining connected signed graphs with non-negative spectrum are given below.
The negation of every signed graphs with 2 eigenvalues also has 2 eigenvalues.

1 −1 −1 1
−1 1 1 −1
−1 1 1 −1

1 −1 −1 1
{4, 03}

3 0 −1 0 −1 −1
0 1 0 −1 −1 1
−1 0 3 0 −1 −1

0 −1 0 1 1 −1
−1 −1 −1 1 2 0
−1 1 −1 −1 0 2

{43, 03}

1 0 −1 0 −1 1
0 1 0 1 −1 −1
−1 0 1 0 1 −1

0 1 0 1 −1 −1
−1 −1 1 −1 2 0

1 −1 −1 −1 0 2
{42, 04}

1 −1 −1 1 −1 1
−1 1 1 −1 1 −1
−1 1 1 −1 1 −1

1 −1 −1 1 −1 1
−1 1 1 −1 1 −1

1 −1 −1 1 −1 1
{6, 05}

1 0 0 −1 0 0 −1 1
0 2 0 0 −1 1 −1 −1
0 0 2 0 1 −1 −1 −1
−1 0 0 1 0 0 1 −1

0 −1 1 0 1 −1 0 0
0 1 −1 0 −1 1 0 0
−1 −1 −1 1 0 0 2 0

1 −1 −1 −1 0 0 0 2
{43, 05}

3 0 0 −1 0 0 −1 −1
0 2 0 0 −1 −1 −1 1
0 0 2 0 −1 −1 1 −1
−1 0 0 3 0 0 −1 −1

0 −1 −1 0 1 1 0 0
0 −1 −1 0 1 1 0 0
−1 −1 1 −1 0 0 2 0
−1 1 −1 −1 0 0 0 2

{44, 04}

3 0 0 −1 0 0 −1 −1
0 2 0 0 −1 −1 −1 1
0 0 2 0 −1 −1 1 −1
−1 0 0 3 0 0 −1 −1

0 −1 −1 0 3 −1 0 0
0 −1 −1 0 −1 3 0 0
−1 −1 1 −1 0 0 2 0
−1 1 −1 −1 0 0 0 2

{45, 03}

1 −1 −1 1 −1 1 1 −1
−1 1 1 −1 1 −1 −1 1
−1 1 1 −1 1 −1 −1 1

1 −1 −1 1 −1 1 1 −1
−1 1 1 −1 1 −1 −1 1

1 −1 −1 1 −1 1 1 −1
1 −1 −1 1 −1 1 1 −1
−1 1 1 −1 1 −1 −1 1

{8, 07}

5. Particular cases of 2 or 3 eigenvalues

Inspired by the previous computational results, in this section we consider some classes
of signed graphs with 2 or 3 eigenvalues. In particular, we are interested in (a) regular
signed graphs with 2 eigenvalues, (b) arbitrary signed graphs with 2 eigenvalues such
that one of them is simple and (c) regular signed graphs with 3 eigenvalues such that 0
is a simple one.

If Ġ is net-regular with common net-degree %, then we have D±
Ġ

= %I, which means
that ν is an eigenvalue of NĠ = D±

Ġ
− AĠ if and only if % − ν is an eigenvalue of

the adjacency matrix AĠ. More interesting case arises when we drop the net-regularity
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and keep the regularity condition. Hence, suppose that Ġ is a regular signed graph with
vertex degree r and 2 eigenvalues: 0 and ν. Taking into account the minimal polynomial,
we get NĠ(NĠ − νI) = O, so N2

Ġ
− νNĠ = O. Consider now the diagonal entries of

the left hand side of the last identity. We have N2
Ġ

= (D±
Ġ

)2 − D±
Ġ
AĠ − AĠD

±
Ġ

+ A2
Ġ

,
and the diagonal entries of D±

Ġ
AĠ and AĠD

±
Ġ

are 0, while the diagonal entries of A2
Ġ

are all equal to r. Thus, for every vertex i of Ġ its net-degree d±i satisfies the quadratic
equation x2 − νx+ r = 0, which leads to the following result.

Theorem 5.1. Let Ġ be a regular signed graph, with degree r. If Ġ has 2 net Laplacian
eigenvalues, then net-degrees of the vertices of Ġ can take only 2 values which are
solutions of the quadratic equation x2−νx+r = 0, where ν is the non-zero net Laplacian
eigenvalue of Ġ.

It is well-known that, for unsigned graphs, the multiplicity of 0 in the Laplacian
spectrum is equal to the number of connected components [10, 11]. Here we have a bit
different situation in which the multiplicity of 0 in the net Laplacian spectrum of Ġ is
not less than the number of components [14]. In other words, every component has 0 as
an eigenvalue of multiplicity at least 1. Examples of connected signed graphs for which
0 is not a simple eigenvalue can be found in the previous section and also in [1]. This
inspires us to consider signed graphs with 2 eigenvalues such that 0 has either minimum
or maximum multiplicity.

Theorem 5.2. Let Ġ be a signed graph with 2 net Laplacian eigenvalues, 0 and ν. The
following statements hold true.

(i) If 0 is simple, then Ġ is the complete unsigned graph or its negation.
(ii) If ν is simple, then Ġ is the disjoint union of a complete signed graph K̇ of even

order and a set of isolated vertices, where the vertices of K̇ are partitioned into
2 parts of equal size in such a way that the edges joining vertices within the each
part have one sign, while the edges joining vertices belonging to different parts
have the opposite sign.

Proof. (i): If the multiplicity of ν is n − 1, where n is the order of Ġ, then NĠ − νI
is a rank one matrix with a non-zero eigenvalue −ν and associated eigenvector j, so
NĠ−νI = − ν

nJ (where J denotes the all-1 matrix). Comparing the off-diagonal entries
in the previous matrix identity, we deduce that ν must be equal to n or −n, and then
we have NĠ = (n− 1)I − (J − I) or NĠ = (1− n)I − (I − J), which means that Ġ is
the complete unsigned graph or its negation.

(ii): If ν is simple and x is the corresponding unit eigenvector, then NĠ has the
spectral decomposition NĠ = νxxᵀ. Observe that if x has a zero entry, then the cor-
responding vertex is not joined to any other vertex of Ġ. Therefore, we may suppose
that there are no isolated vertices in Ġ. Now, if xi and xj are the entries corresponding
to the vertices i and j, then νxixj = ±1 must hold; in particular νx2

i = 1. We also
have νx2

i = d±i and νx2
j = d±j , and from ν2x2

ix
2
j = 1, we obtain d±i d

±
j = 1. This implies

d±i = d±j = ±1, which means that Ġ is in fact net-regular with net-degree 1 or −1. From
νx2

i = 1, we have that the trace of NĠ is either n or −n, so ν equals n or −n, and thus
x2
i = 1

n with xi = ± 1√
n

. Since x is orthogonal to j, n must be even, i.e. n = 2k, and the
adjacency matrix AĠ has the form(

Jk − Ik −Jk
−Jk Jk − Ik

)
or

(
Ik − Jk Jk
Jk Ik − Jk

)
,

11



which leads to the desired result.

We conclude the section with the following result.

Theorem 5.3. Let Ġ be a regular signed graph with degree r, order n and 3 net Lapla-
cian eigenvalues: simple one 0, ν and µ. Then n divides νµ and net-degrees are the
solutions of x2 − (ν + µ)x+ r + νµ− νµ

n = 0.

Proof. The matrix (NĠ− νI)(NĠ−µI) is a rank one matrix with one non-zero eigen-
value νµ and the corresponding eigenvector j. Accordingly,

(NĠ − νI)(NĠ − µI) = νµ

n
J. (5)

From the minimal polynomial NĠ

(
N2
Ġ
− (ν + µ)NĠ + νµI

)
= O, we conclude that

ν + µ is an integer, which means that the off-diagonal entries of the matrix in the left-
hand side of (5) are integers, and this implies that νµ is divisible by n. Considering
the diagonal entries, we get that the net-degree of every vertex satisfies the quadratic
equation given in the statement formulation, and we are done.

Examples for Theorems 5.1 and 5.2 can be found in the previous section. It is not
difficult to see that the ∇-threshold graph generated by (1, 1, . . . , 1,−1,−1, . . . ,−1)
(with arbitrary numbers of 1s and −1s) is an example for Theorem 5.3.

6. An application

Matrices with simple eigenvalues are required in various fields of applied mathematics.
Graph theory can serve as a useful tool for their generation as well as for the analysis
of their spectra. Here we emphasize an application in control theory of certain net
Laplacian matrices having the mentioned spectral property.

We recall from [7, 12] that for an n× 1 binary vector b and the n× n net Laplacian
matrix NĠ of a signed graph Ġ, the pair (NĠ,b) is controllable if NĠ has no eigenvector
orthogonal to b. The terminology comes from the domain of control theory, and for
more details we refer the reader to [7, 8, 12]. In the same references one may find a
more general approach concerning an arbitrary matrix and an arbitrary vector (of the
appropriate size). The matrices associated with (signed) graphs have received a great
deal of attention in the past; some references are [4, 7, 12, 17, 14].

It follows that if NĠ has a repeated eigenvalue, then NĠ has an eigenvector orthogonal
to b for any choice of b. To see this, suppose that x1 and x2 are linearly independent
eigenvectors associated with a fixed eigenvalue, and neither of them is orthogonal to b.
Then the vector x = (bᵀx1)x2 − (bᵀx2)x1 is an eigenvector associated with the same
eigenvalue, but also orthogonal to b. Therefore, a necessary controllability condition
requires all the eigenvalues to be simple.

We consider the controllability of signed graphs of Theorems 3.4, 3.5 and of graphs
obtained by some standard products. We first recall a result of [15] in which the spectrum
of some standard products is computed.

As in Theorem 2.1, let Ġ1 be a signed graph with the vertex set {u1, u2, . . . , un1}
and the eigenvalues ν1(Ġ1), ν2(Ġ1), . . . , νn1(Ġ1), and let Ġ2 be a signed graph with the
vertex set {v1, v2, . . . , vn2} and the eigenvalues ν1(Ġ2), ν2(Ġ2), . . . , νn2(Ġ2).

We consider the products in which the set of vertices is the Cartesian product of the
sets of vertices of Ġ1 and Ġ2. In the Cartesian product Ġ1 � Ġ2, the vertices (ui, vj)
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and (uk, vl) are adjacent if and only if ui = uk and vj ∼ vl, or ui ∼ uk and vj = vl.
The sign of an edge coincides with the sign of the edge it arises from. In the tensor
product Ġ1 × Ġ2, the vertices (ui, vj) and (uk, vl) are adjacent if and only if ui ∼ uk
and vj ∼ vl. The sign of an edge is the product of signs of the corresponding edges of
Ġ1 and Ġ2. In the strong product Ġ1 � Ġ2, the vertices (ui, vj) and (uk, vl) are adjacent
if and only if they are adjacent in any of the previous two products and the sign of an
edge is determined as in the previous particular cases.

Theorem 6.1. [15, Theorem 4] For the signed graphs Ġ1 and Ġ2 of orders n1 and n2,
we have:

(i) the net Laplacian eigenvalues of NĠ1�Ġ2
are νi(Ġ1) + νj(Ġ2), 1 ≤ i ≤ n1, 1 ≤

j ≤ n2;
(ii) if Ġ1 and Ġ2 are net-regular with net-degrees %1 and %2, respectively, then the net

Laplacian eigenvalues of NĠ1×Ġ2
are %1νj(Ġ2)+%2νi(Ġ1)−νi(Ġ1)νj(Ġ2), 1 ≤ i ≤

n1, 1 ≤ j ≤ n2;
(iii) if Ġ1 and Ġ2 are net-regular with net-degrees %1 and %2, respectively, then the

net Laplacian eigenvalues of NĠ1�Ġ2
are (%1 + 1)νj(Ġ2) + (%2 + 1)νi(Ġ1) −

νi(Ġ1)νj(Ġ2), 1 ≤ i ≤ n1, 1 ≤ j ≤ n2.

Hence, if Ġ1 and Ġ2 are integral, then the signed graphs constructed in the previous
theorem are also integral.

In what follows we assume that the vertices of a signed graph under consideration
are labelled in the order given by the corresponding operation. (For example, if Ġ ∼=
Ġ1∇+Ġ2, then we first take the vertices of Ġ1 and then those of Ġ2.)

Theorem 6.2. If Ġ is a signed graph with n vertices formed as in Theorem 3.4, then
(NĠ,b) is controllable if and only if

b ∈


0

1
c

 ,
1

0
c

 ,
where c is an arbitrary binary vector of length n− 2.

Proof. First, if the generating sequence contains just 2 entries (in which case Ġ has
2 vertices that are either non-adjacent or joined by a positive edge), then the eigen-
vectors of Ġ are (1, 1)ᵀ and (1,−1)ᵀ, and so (NĠ,b) is controllable if and only if
b ∈ {(0, 1)ᵀ, (1, 0)ᵀ}. Assume that the statement holds for Ġn−1 generated by the
sequence of length n− 1. Then the eigenvectors of Ġ ∼= Ġn are(

j x1 x2 · · · xn−2 − 1
n−1 j

1 0 0 · · · 0 1

)
,

where x1,x2, . . . ,xn−2 are the eigenvectors of Ġn−1 orthogonal to j. Let b = (bᵀn−1, b)ᵀ,
where bn−1 is a binary vector such that (NĠn−1

,bn−1) is controllable and b ∈ {0, 1}.
Evidently, b is non-orthogonal to the eigenvectors of Ġ which proves one implication.
Conversely, if the first two entries of b are equal, then its restriction obtained by remov-
ing the last entry is non-orthogonal to all the eigenvectors of Ġn−1, which contradicts
our assumption on Ġn−1, and the proof is complete.
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We proceed with particular ∇-cographs of Theorem 3.5. We recall from Section 2
that <,> stands for the Euclidean inner product.

Theorem 6.3. Let Ġ be a signed graph formed as in Theorem 3.5, so Ġ ∼= Ḣ1∇+(K1∪
Ḣ2). The pair (NĠ,b) is controllable if and only if

b =
(

b1
b2

)
,

where b1 (resp. b2) is a vector of length k (l+1) non-orthogonal to the net eigenvectors
of Ḣ1 (K1 ∪ Ḣ2), along with 〈b2, jl+1〉 /∈ {−〈b1, jk〉, l+1

k 〈b1, jk〉}.

Proof. Let (NĠ,b) be controllable. If b = (aᵀ1 , a
ᵀ
2 )ᵀ, where say a2 is not as we described

in the formulation of the statement, then there is an eigenvector x of K1 ∪ Ḣ2 which
is orthogonal to a2 but then (0ᵀ,x)ᵀ is an eigenvector of Ġ orthogonal to b. If both
a1 and a2 are as in the statement, but 〈b2, jl+1〉 ∈ {−〈b1, jk〉, l+1

k 〈b1, jk〉}, then b is
orthogonal to either jn or the eigenvector associated with the largest eigenvalue of Ġ,
and we are done.

Let now b be as in the statement, and let x be an eigenvector of Ġ. If x is associated
with 0 or k + l + 1, then 〈b,x〉 6= 0 due to the particular condition on 〈b2, jl+1〉. If x
is associated with some of the remaining eigenvalues, then 〈b,x〉 ∈ {〈b1,x1〉, 〈b2,x2〉},
where x1 (resp. x2) is an eigenvector of Ḣ1 (K1 ∪ Ḣ2) orthogonal to jk (jl+1), which
yields 〈b,x〉 6= 0.

We conclude this section by considering the signed graphs of Theorem 6.1. Since the
eigenvectors of all three products considered in the mentioned theorem are the Kronecker
products of the corresponding eigenvectors of Ġ1 and Ġ2 (see [15]), we conclude that
if x = (x1, x2, . . . , xn1)ᵀ and y are the eigenvectors of Ġ1 and Ġ2, respectively, then
(x1yᵀ, x2yᵀ, . . . , xn1yᵀ)ᵀ is an eigenvector of Ġ.

If b = (bᵀ1 ,b
ᵀ
2 , . . . ,bᵀn1)ᵀ is a binary vector, such that length of each bi is n2, then

(NĠ,b) is controllable if and only if
∑n1
i=1 xi〈y,bi〉 6= 0, for all the eigenvectors x of Ġ1

and y of Ġ2. This leads to the following result.

Theorem 6.4. Let Ġ be a signed graph formed as in Theorem 6.1, such that its net
Laplacian eigenvalues are all simple, let (NĠ1

,b1) and (NĠ2
,b2) be controllable, where

b1 = (b11, b12, . . . , b1n1)ᵀ, and let b = (b11bᵀ2 , b12bᵀ2 , . . . , b1n1bᵀ2 )ᵀ. Then (NĠ,b) is con-
trollable.

Similar links between spectral graph theory and control theory can be found in [2, 3,
4, 7, 8, 12, 14, 17] and references therein.
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