Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1288
DC FieldValueLanguage
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2024-05-30T13:47:39Z-
dc.date.available2024-05-30T13:47:39Z-
dc.date.issued2023-09-01-
dc.identifier.issn00243795-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1288-
dc.description© 2023. This manuscript version is made available under the CC-BY-NC-ND 3.0 license https://creativecommons.org/licenses/by-nc-nd/3.0/en_US
dc.description.abstractA double starlike tree is a tree in which exactly two vertices have degree greater than two. In this study we consider double starlike trees obtained by attaching p−2(forp≥3) pendant vertices at an internal vertex and q−2(q≥3) pendant vertices at a different internal vertex of a fixed path P. We denote this tree by T≅D(a,b,c,p,q), where a,b,c stand for the numbers of vertices in segments of P obtained by deleting vertices of degree p and q. It is known that, depending on parameters, T may or may not be determined by its Laplacian spectrum. In the latter case we provide the structure of a putative tree with the same Laplacian spectrum. This result implies the known result stating that D(1,b,1,p,q) is determined by the Laplacian spectrum and two new results stating the same for D(1,b,2,p,p) and D(2,b,2,p,p).en_US
dc.publisherElsevieren_US
dc.relation.ispartofLinear Algebra and Its Applicationsen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectDouble starlike treeen_US
dc.subjectLaplacian matrixen_US
dc.subjectPathen_US
dc.subjectVertex degreeen_US
dc.titleDetermination of particular double starlike trees by the Laplacian spectrumen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.laa.2023.04.028-
dc.identifier.scopus2-s2.0-85158829190-
dc.identifier.isi001009508400001-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85158829190-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.issn0024-3795en_US
dc.description.rankМ21en_US
dc.relation.firstpage182en_US
dc.relation.lastpage194en_US
dc.relation.volume672en_US
item.fulltextWith Fulltext-
item.openairetypeArticle-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Files in This Item:
File Description SizeFormat
dstreeFINAL.pdf395.56 kBAdobe PDF
View/Open
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 8, 2024

Page view(s)

23
checked on Nov 15, 2024

Download(s)

5
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons