Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/1284
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kocić, Đorđe | en_US |
dc.contributor.author | Antić, Miroslava | en_US |
dc.date.accessioned | 2024-05-29T13:45:14Z | - |
dc.date.available | 2024-05-29T13:45:14Z | - |
dc.date.issued | 2024 | - |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/1284 | - |
dc.description.abstract | The aim of the paper is to present two results concerning real hypersurfaces in the six-dimensional sphere 𝑆6(1). More precisely, we prove that real hypersurfaces with the Lie-parallel shape operator A must be totally geodesic hyperspheres. Additionally, we classify real hypersurfaces in a nearly Kähler sphere 𝑆6(1) whose Lie derivative of the shape operator coincides with its covariant derivative. | en_US |
dc.language.iso | en | en_US |
dc.publisher | MDPI | en_US |
dc.relation.ispartof | Mathematics | en_US |
dc.rights | Attribution 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/us/ | * |
dc.subject | Hopf hypersurface | en_US |
dc.subject | nearly Kähler manifolds | en_US |
dc.subject | real hypersurfaces | en_US |
dc.subject | shape operator | en_US |
dc.subject | Lie derivative | en_US |
dc.title | The Shape Operator of Real Hypersurfaces in S^6(1) | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.3390/math12111668 | - |
dc.contributor.affiliation | Geometry | en_US |
dc.contributor.affiliation | Geometry | en_US |
dc.relation.issn | 2227-7390 | en_US |
dc.description.rank | M21a | en_US |
dc.relation.firstpage | Article no. 1688 | en_US |
dc.relation.volume | 12 | en_US |
dc.relation.issue | 11 | en_US |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.openairetype | Article | - |
item.grantfulltext | open | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Geometry | - |
crisitem.author.dept | Geometry | - |
crisitem.author.orcid | 0000-0003-2255-2992 | - |
crisitem.author.orcid | 0000-0002-2111-7174 | - |
Appears in Collections: | Research outputs |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
mathematics-12-01668.pdf | 221.28 kB | Adobe PDF | View/Open |
Page view(s)
18
checked on Nov 15, 2024
Download(s)
1
checked on Nov 15, 2024
Google ScholarTM
Check
Altmetric
Altmetric
This item is licensed under a Creative Commons License