Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1284
DC FieldValueLanguage
dc.contributor.authorKocić, Đorđeen_US
dc.contributor.authorAntić, Miroslavaen_US
dc.date.accessioned2024-05-29T13:45:14Z-
dc.date.available2024-05-29T13:45:14Z-
dc.date.issued2024-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/1284-
dc.description.abstractThe aim of the paper is to present two results concerning real hypersurfaces in the six-dimensional sphere 𝑆6(1). More precisely, we prove that real hypersurfaces with the Lie-parallel shape operator A must be totally geodesic hyperspheres. Additionally, we classify real hypersurfaces in a nearly Kähler sphere 𝑆6(1) whose Lie derivative of the shape operator coincides with its covariant derivative.en_US
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.ispartofMathematicsen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.subjectHopf hypersurfaceen_US
dc.subjectnearly Kähler manifoldsen_US
dc.subjectreal hypersurfacesen_US
dc.subjectshape operatoren_US
dc.subjectLie derivativeen_US
dc.titleThe Shape Operator of Real Hypersurfaces in S^6(1)en_US
dc.typeArticleen_US
dc.identifier.doi10.3390/math12111668-
dc.contributor.affiliationGeometryen_US
dc.contributor.affiliationGeometryen_US
dc.relation.issn2227-7390en_US
dc.description.rankM21aen_US
dc.relation.firstpageArticle no. 1688en_US
dc.relation.volume12en_US
dc.relation.issue11en_US
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeArticle-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptGeometry-
crisitem.author.deptGeometry-
crisitem.author.orcid0000-0003-2255-2992-
crisitem.author.orcid0000-0002-2111-7174-
Appears in Collections:Research outputs
Files in This Item:
File Description SizeFormat
mathematics-12-01668.pdf221.28 kBAdobe PDF
View/Open
Show simple item record

Page view(s)

18
checked on Nov 15, 2024

Download(s)

1
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons