Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/1223
Title: Extremal behaviour of ±1-valued completely multiplicative functions in function fields
Authors: Lelas, Nikola 
Affiliations: Algebra and Mathematical Logic 
Keywords: Function fields;Liouville function;M¨obius function;Quadratic characters
Issue Date: 2021
Rank: M23
Journal: Glasnik Matematicki
Abstract: 
We investigate the classical Polya and Turan conjectures in the context of rational function fields over finite fields Fq. Related to these two conjectures we investigate the sign of truncations of Dirichlet L-functions at point s = 1 corresponding to quadratic characters over Fq[t], prove a variant of a theorem of Landau for arbitrary sets of monic, irreducible polynomials over Fq[t] and calculate the mean value of certain variants of the Liouville function over Fq[t].
URI: https://research.matf.bg.ac.rs/handle/123456789/1223
ISSN: 0017095X
DOI: 10.3336/gm.56.1.06
Appears in Collections:Research outputs

Show full item record

Page view(s)

8
checked on Dec 25, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.