Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/9
DC FieldValueLanguage
dc.contributor.authorAntić, Miroslavaen_US
dc.contributor.authorDjurdjević, Natašaen_US
dc.contributor.authorMoruz, Marilenaen_US
dc.date.accessioned2022-08-06T14:49:06Z-
dc.date.available2022-08-06T14:49:06Z-
dc.date.issued2018-06-01-
dc.identifier.issn16605446en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/9-
dc.description.abstractIn a previous paper (Antić et al., three-dimensional CR submanifolds of the nearly Kähler S3× S3, 2017), the authors together with L. Vrancken initiated the study of 3-dimensional CR submanifolds of the nearly Kähler homogeneous S3× S3. As is shown by Butruille, this is one of only four homogeneous 6-dimensional nearly Kähler manifolds. Besides its almost complex structure J, it also admits a canonical almost product structure P, see (Moruz and Vrancken, Publ Inst Math 2018) and (Bolton et al., Tôhoku Math J 67:1–17, 2015). Along a proper 3-dimensional CR submanifold, the tangent space of S3× S3 can be naturally split as the orthogonal sum of three 2-dimensional vector bundles D1, D2 and D3. We study the CR submanifolds in relation with the behavior of the almost product structure on these vector bundles.en
dc.relation.ispartofMediterranean Journal of Mathematicsen_US
dc.subjectAlmost product structureen
dc.subjectAngle functionsen
dc.subjectCR submanifolden
dc.subjectNearly Kähler S × S 3 3en
dc.titleCR Submanifolds of the Nearly Kähler S<sup>3</sup>× S<sup>3</sup> Characterised by Properties of the Almost Product Structureen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00009-018-1152-6-
dc.identifier.scopus2-s2.0-85046749379-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85046749379-
dc.contributor.affiliationGeometryen_US
dc.relation.volume15en_US
dc.relation.issue3en_US
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptGeometry-
crisitem.author.orcid0000-0002-2111-7174-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

3
checked on Nov 15, 2024

Page view(s)

13
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.