Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/985
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Arsenović, Miloš | en_US |
dc.date.accessioned | 2022-08-17T11:10:51Z | - |
dc.date.available | 2022-08-17T11:10:51Z | - |
dc.date.issued | 2014-12-01 | - |
dc.identifier.issn | 0022247X | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/985 | - |
dc.description.abstract | In this paper we employ a C{star operator}-algebra approach to the study of Fredholm properties of differential and pseudodifferential operators on the half line. The algebra investigated in this paper has compact commutators, so the Gelfand theory applies to the quotient algebra, and we obtain an explicit description of the corresponding maximal ideal space and necessary and sufficient conditions for Fredholmness of operators in the algebra. © 2014 Elsevier Inc. | en |
dc.relation.ispartof | Journal of Mathematical Analysis and Applications | en |
dc.subject | Essential spectrum | en |
dc.subject | Fredholm operators | en |
dc.subject | Singular differential operators | en |
dc.title | A C<sup>{star operator}</sup> algebra of pseudodifferential operators on the half line | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.jmaa.2014.06.024 | - |
dc.identifier.scopus | 2-s2.0-84904168935 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/84904168935 | - |
dc.contributor.affiliation | Mathematical Analysis | en_US |
dc.relation.firstpage | 814 | en |
dc.relation.lastpage | 823 | en |
dc.relation.volume | 420 | en |
dc.relation.issue | 1 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Mathematical Analysis | - |
crisitem.author.orcid | 0000-0002-5450-2407 | - |
Appears in Collections: | Research outputs |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.