Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/982
DC FieldValueLanguage
dc.contributor.authorArsenović, Milošen_US
dc.contributor.authorShamoyan, Romi F.en_US
dc.date.accessioned2022-08-17T11:10:51Z-
dc.date.available2022-08-17T11:10:51Z-
dc.date.issued2013-09-25-
dc.identifier.issn14509628en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/982-
dc.description.abstractThis paper is devoted to certain applications of classical Whitney de- composition of the upper half space Rn+1+ to various problems in harmonic function spaces in the upper half space. We obtain sharp new assertions on embeddings, distances and traces for various spaces of harmonic functions. New sharp theorems on multipliers for harmonic function spaces in the unit ball are also presented.en
dc.relation.ispartofKragujevac Journal of Mathematicsen
dc.subjectDistancesen
dc.subjectEmbedding theoremsen
dc.subjectHarmonic functionsen
dc.subjectMultipliersen
dc.subjectTracesen
dc.subjectWhitney decomposition.en
dc.titleOn embeddings, traces and multipliers in harmonic function spacesen_US
dc.typeArticleen_US
dc.identifier.scopus2-s2.0-84884358098-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84884358098-
dc.contributor.affiliationMathematical Analysisen_US
dc.relation.firstpage45en
dc.relation.lastpage64en
dc.relation.volume37en
dc.relation.issue1en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptMathematical Analysis-
crisitem.author.orcid0000-0002-5450-2407-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

2
checked on Nov 8, 2024

Page view(s)

15
checked on Nov 14, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.