Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/981
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Arsenović, Miloš | en_US |
dc.contributor.author | Manojlović, Vesna | en_US |
dc.contributor.author | Vuorinen, Matti | en_US |
dc.date.accessioned | 2022-08-17T11:10:51Z | - |
dc.date.available | 2022-08-17T11:10:51Z | - |
dc.date.issued | 2011-12-01 | - |
dc.identifier.issn | 10255834 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/981 | - |
dc.description.abstract | We prove that for harmonic quasiconformal mappings α-Hölder continuity on the boundary implies α-Hölder continuity of the map itself. Our result holds for the class of uniformly perfect bounded domains, in fact we can allow that a portion of the boundary is thin in the sense of capacity. The problem for general bounded domains remains open. © 2011 Arsenoviéć et al; licensee Springer. | en |
dc.relation.ispartof | Journal of Inequalities and Applications | en |
dc.subject | H?ö?lder continuity | en |
dc.subject | Harmonic mappings | en |
dc.subject | Quasi-conformal maps | en |
dc.title | Hölder continuity of harmonic quasiconformal mappings | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1186/1029-242X-2011-37 | - |
dc.identifier.scopus | 2-s2.0-84868123182 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/84868123182 | - |
dc.contributor.affiliation | Mathematical Analysis | en_US |
dc.relation.volume | 2011 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Mathematical Analysis | - |
crisitem.author.orcid | 0000-0002-5450-2407 | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
4
checked on Nov 8, 2024
Page view(s)
6
checked on Nov 14, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.