Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/979
DC FieldValueLanguage
dc.contributor.authorArsenović, Milošen_US
dc.contributor.authorBakić, Radošen_US
dc.date.accessioned2022-08-17T11:10:50Z-
dc.date.available2022-08-17T11:10:50Z-
dc.date.issued2018-01-01-
dc.identifier.issn13101331en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/979-
dc.description.abstractWe are investigating the problem of finding the upper bound of the modulus of elementary symmetric polynomials ek (z1, …, zn), where variables z1, …, zn are subject to conditions z1 + · · · + zn = 0 and |zj | ≤ R for all j = 1, …, n. We give a sharp upper bound in the case k = n−1. We also give an estimate in the case k = n − 2, which is sharp for even n. These estimates are then applied to give results on location of zeros of polynomials.en_US
dc.language.isoenen_US
dc.publisherSofia : Publ. House Bulgarian Academy of Sciencesen_US
dc.relation.ispartofComptes Rendus de L'Academie Bulgare des Sciencesen_US
dc.subjectElementary symmetric polynomialsen_US
dc.subjectLocation of zerosen_US
dc.titleSome inequalities for elementary symmetric polynomials in the complex domainen_US
dc.typeArticleen_US
dc.identifier.doi10.7546/CRABS.2018.04.01-
dc.identifier.scopus2-s2.0-85046811708-
dc.identifier.isi000432411600001-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85046811708-
dc.contributor.affiliationMathematical Analysisen_US
dc.relation.issn1310-1331en_US
dc.description.rankM23en_US
dc.relation.firstpage447en_US
dc.relation.lastpage452en_US
dc.relation.volume71en_US
dc.relation.issue4en_US
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeArticle-
item.cerifentitytypePublications-
crisitem.author.deptMathematical Analysis-
crisitem.author.orcid0000-0002-5450-2407-
Appears in Collections:Research outputs
Show simple item record

Page view(s)

14
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.