Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/974
DC FieldValueLanguage
dc.contributor.authorArsenović, Milošen_US
dc.contributor.authorShamoyan, Romi F.en_US
dc.date.accessioned2022-08-17T11:10:49Z-
dc.date.available2022-08-17T11:10:49Z-
dc.date.issued2011-12-01-
dc.identifier.issn14509628en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/974-
dc.description.abstractWe introduce and study properties of certain new harmonic function spaces in products of upper half spaces. Norm estimates for the so called expanded Bergman projection are obtained. Sharp theorems on multipliers acting on certain Sobolev type spaces of harmonic functions on the unit ball are obtained.en_US
dc.language.isoenen_US
dc.publisherKragujevac : Prirodno-matematički fakulteten_US
dc.relation.ispartofKragujevac Journal of Mathematicsen_US
dc.subjectEmbedding theoremsen_US
dc.subjectHarmonic functionsen_US
dc.subjectIntegral operatorsen_US
dc.subjectTracesen_US
dc.subjectUnit ballen_US
dc.subjectUpper half spaceen_US
dc.titleTrace theorems in harmonic function spaces on (ℝ <sup>n+1</sup><inf>+</inf>) <sup>m</sup>, multipliers theorems and related problemsen_US
dc.typeArticleen_US
dc.identifier.scopus2-s2.0-84859546705-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84859546705-
dc.contributor.affiliationMathematical Analysisen_US
dc.relation.issn1450-9628en_US
dc.description.rankM51en_US
dc.relation.firstpage411en_US
dc.relation.lastpage430en_US
dc.relation.volume35en_US
dc.relation.issue3en_US
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
crisitem.author.deptMathematical Analysis-
crisitem.author.orcid0000-0002-5450-2407-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

2
checked on Dec 10, 2025

Page view(s)

8
checked on Jan 19, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.