Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/929
DC FieldValueLanguage
dc.contributor.authorBaralić, Djordjeen_US
dc.contributor.authorGrbić, Jelenaen_US
dc.contributor.authorLimonchenko, Ivanen_US
dc.contributor.authorVučić, Aleksandaren_US
dc.date.accessioned2022-08-16T11:17:27Z-
dc.date.available2022-08-16T11:17:27Z-
dc.date.issued2020-01-01-
dc.identifier.issn03545180en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/929-
dc.description.abstractIn this paper we illustrate a tight interplay between homotopy theory and combinatorics within toric topology by explicitly calculating homotopy and combinatorial invariants of toric objects associated with the dodecahedron. In particular, we calculate the cohomology ring of the (complex and real) moment-angle manifolds over the dodecahedron, and of a certain quasitoric manifold and of a related small cover. We finish by studying Massey products in the cohomology ring of moment-angle manifolds over the dodecahedron and how the existence of nontrivial Massey products influences the behaviour of the Poincaré series of the corresponding Pontryagin algebra.en
dc.relation.ispartofFilomaten
dc.subjectCohomologyen
dc.subjectDodecahedronen
dc.subjectIcosahedronen
dc.subjectMoment-angle complexen
dc.subjectQuasitoric manifoldsen
dc.subjectSmall coversen
dc.subjectToric actionen
dc.titleToric objects associated with the dodecahedronen_US
dc.typeArticleen_US
dc.identifier.doi10.2298/FIL2007329B-
dc.identifier.scopus2-s2.0-85099226891-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85099226891-
dc.contributor.affiliationTopologyen_US
dc.relation.firstpage2329en
dc.relation.lastpage2356en
dc.relation.volume34en
dc.relation.issue7en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptTopology-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

4
checked on Nov 10, 2024

Page view(s)

8
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.