Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/928
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Baralić, Djordje | en_US |
dc.contributor.author | Blagojević, Pavle V.M. | en_US |
dc.contributor.author | Karasev, Roman | en_US |
dc.contributor.author | Vučić, Aleksandar | en_US |
dc.date.accessioned | 2022-08-16T11:17:27Z | - |
dc.date.available | 2022-08-16T11:17:27Z | - |
dc.date.issued | 2018-11-01 | - |
dc.identifier.issn | 09337741 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/928 | - |
dc.description.abstract | In this paper, we study the Z/2 action on the real Grassmann manifolds Gn (R2n) and ∼Gn (R2n) given by taking the (appropriately oriented) orthogonal complement.We completely evaluate the relatedZ/2 Fadell-Husseini index utilizing a novel computation of the Stiefel-Whitney classes of the wreath product of a vector bundle. These results are used to establish the following geometric result about the orthogonal shadows of a convex body: For n = 2a (2b + 1), k = 2a+1-1, a convex body C in R 2n, and k real-valued functions α1, . . . , αk continuous on convex bodies in R2n with respect to the Hausdorff metric, there exists a subspace V ⊆ R 2n such that projections of C to V and its orthogonal complement V have the same value with respect to each function αi, that is, αi(pV(C)) = αi(pV (C)) for all 1 ≤ i ≤ k. | en |
dc.relation.ispartof | Forum Mathematicum | en |
dc.subject | Cohomology of Grassmann manifolds | en |
dc.subject | existence of equivariant maps | en |
dc.subject | Fadell-Husseini ideal-valued index | en |
dc.title | Index of Grassmann manifolds and orthogonal shadows | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1515/forum-2018-0058 | - |
dc.identifier.scopus | 2-s2.0-85052697900 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85052697900 | - |
dc.contributor.affiliation | Topology | en_US |
dc.relation.firstpage | 1539 | en |
dc.relation.lastpage | 1572 | en |
dc.relation.volume | 30 | en |
dc.relation.issue | 6 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Topology | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
3
checked on Nov 10, 2024
Page view(s)
15
checked on Nov 14, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.