Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/928
DC FieldValueLanguage
dc.contributor.authorBaralić, Djordjeen_US
dc.contributor.authorBlagojević, Pavle V.M.en_US
dc.contributor.authorKarasev, Romanen_US
dc.contributor.authorVučić, Aleksandaren_US
dc.date.accessioned2022-08-16T11:17:27Z-
dc.date.available2022-08-16T11:17:27Z-
dc.date.issued2018-11-01-
dc.identifier.issn09337741en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/928-
dc.description.abstractIn this paper, we study the Z/2 action on the real Grassmann manifolds Gn (R2n) and ∼Gn (R2n) given by taking the (appropriately oriented) orthogonal complement.We completely evaluate the relatedZ/2 Fadell-Husseini index utilizing a novel computation of the Stiefel-Whitney classes of the wreath product of a vector bundle. These results are used to establish the following geometric result about the orthogonal shadows of a convex body: For n = 2a (2b + 1), k = 2a+1-1, a convex body C in R 2n, and k real-valued functions α1, . . . , αk continuous on convex bodies in R2n with respect to the Hausdorff metric, there exists a subspace V ⊆ R 2n such that projections of C to V and its orthogonal complement V have the same value with respect to each function αi, that is, αi(pV(C)) = αi(pV (C)) for all 1 ≤ i ≤ k.en
dc.relation.ispartofForum Mathematicumen
dc.subjectCohomology of Grassmann manifoldsen
dc.subjectexistence of equivariant mapsen
dc.subjectFadell-Husseini ideal-valued indexen
dc.titleIndex of Grassmann manifolds and orthogonal shadowsen_US
dc.typeArticleen_US
dc.identifier.doi10.1515/forum-2018-0058-
dc.identifier.scopus2-s2.0-85052697900-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85052697900-
dc.contributor.affiliationTopologyen_US
dc.relation.firstpage1539en
dc.relation.lastpage1572en
dc.relation.volume30en
dc.relation.issue6en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptTopology-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

3
checked on Nov 10, 2024

Page view(s)

15
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.