Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/927
DC FieldValueLanguage
dc.contributor.authorGrbić, J.en_US
dc.contributor.authorVučić, Aleksandaren_US
dc.date.accessioned2022-08-16T11:17:26Z-
dc.date.available2022-08-16T11:17:26Z-
dc.date.issued2021-
dc.identifier.issn10645616en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/927-
dc.description.abstractIn this paper, using homotopy theoretical methods we study the degrees of maps between (n-1)-connected (2n+1)-dimensional Poincaré complexes. Necessary and sufficient algebraic conditions for the existence of mapping degrees between such Poincaré complexes are established. These conditions allow us, up to homotopy, to construct explicitly all maps with a given degree. As an application of mapping degrees, we consider maps between (n-1)-connected (2n+1)-dimensional Poincaré complexes with degree ±1, and give a sufficient condition for these to be homotopy equivalences. This resolves a homotopy theoretical analogue of Novikov's question: when is a map of degree between manifolds a homeomorphism? For low , we classify, up to homotopy, torsion free (n-1)-connected (2n+1)-dimensional Poincaré complexes. Bibliography: 29 titles.en
dc.relation.ispartofSbornik Mathematicsen
dc.subjectclassification of Poincaré complexesen
dc.subjecthighly connected manifolds and Poincaré complexesen
dc.subjecthomotopy theoryen
dc.subjectmapping degreeen
dc.titleThe degrees of maps between (n-1)-connected (2n+1)-dimensional manifolds or Poincaré complexes and their applicationsen_US
dc.typeArticleen_US
dc.identifier.doi10.1070/SM9436-
dc.identifier.scopus2-s2.0-85123513893-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85123513893-
dc.contributor.affiliationTopologyen_US
dc.relation.firstpage1360en
dc.relation.lastpage1414en
dc.relation.volume212en
dc.relation.issue10en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptTopology-
Appears in Collections:Research outputs
Show simple item record

Page view(s)

12
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.