Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/911
DC FieldValueLanguage
dc.contributor.authorRadulović, Radoslaven_US
dc.contributor.authorJeremić, Bojanen_US
dc.contributor.authorŠalinić, Slavišaen_US
dc.contributor.authorObradović, Aleksandaren_US
dc.contributor.authorDražić, Milanen_US
dc.date.accessioned2022-08-16T11:02:00Z-
dc.date.available2022-08-16T11:02:00Z-
dc.date.issued2018-05-01-
dc.identifier.issn00207462en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/911-
dc.description.abstractWe consider the brachistochrone problem of the particle with a preselected interval for the normal reaction force value as well as the terminal position of the particle lying on an arbitrary planar curve. We use optimal control theory to solve the formulated brachistochrone problem. Here we treat the brachistochrone curve as a bilateral ideal constraint. We study the cases of symmetrically and unsymmetrically preselected intervals for the normal reaction force value. We show that in the case of a symmetrically preselected interval for the normal reaction force value, the brachistochrone curve is a two-segment curve, and in the case of an unsymmetrically preselected interval, it is a three-segment curve. We present a numerical procedure for the identification of the global minimum time of motion. Finally, we present several examples to illustrate the approach proposed in the paper.en
dc.relation.ispartofInternational Journal of Non-Linear Mechanicsen
dc.subjectBrachistochroneen
dc.subjectGlobal minimum timeen
dc.subjectOptimal controlen
dc.subjectSingular controlen
dc.titleA new approach for the determination of the global minimum time for the brachistochrone with preselected interval for the normal reaction force valueen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.ijnonlinmec.2018.02.001-
dc.identifier.scopus2-s2.0-85042371132-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85042371132-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.firstpage26en
dc.relation.lastpage35en
dc.relation.volume101en
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.deptNumerical Mathematics and Optimization-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

4
checked on Jul 14, 2025

Page view(s)

7
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.