Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/901
DC FieldValueLanguage
dc.contributor.authorĐanković, Goranen_US
dc.contributor.authorKhan, Rizwanuren_US
dc.date.accessioned2022-08-15T18:17:03Z-
dc.date.available2022-08-15T18:17:03Z-
dc.date.issued2018-01-01-
dc.identifier.issn0022314Xen
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/901-
dc.description.abstractWe formulate a version of the Random Wave Conjecture for the fourth moment of Eisenstein series which is based on Zagier's regularized inner product. We prove an asymptotic formula expressing the regularized fourth moment as a mean value of L-functions. This is an advantage over previous work in the literature, which has approached the fourth moment problem through truncated Eisenstein series and not yielded a suitable expression in terms of L-functions.en
dc.relation.ispartofJournal of Number Theoryen
dc.subjectAutomorphic formsen
dc.subjectEisenstein seriesen
dc.subjectEquidistributionen
dc.subjectL-functionsen
dc.subjectL -norm 4en
dc.subjectQuantum chaosen
dc.subjectRandom wave conjectureen
dc.subjectRegularized inner productsen
dc.titleA conjecture for the regularized fourth moment of Eisenstein seriesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jnt.2017.06.012-
dc.identifier.scopus2-s2.0-85026247303-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85026247303-
dc.contributor.affiliationAlgebra and Mathematical Logicen_US
dc.relation.firstpage236en
dc.relation.lastpage257en
dc.relation.volume182en
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
crisitem.author.deptAlgebra and Mathematical Logic-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

3
checked on Dec 20, 2024

Page view(s)

10
checked on Dec 25, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.