Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/900
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Đanković, Goran | en_US |
dc.date.accessioned | 2022-08-15T18:17:03Z | - |
dc.date.available | 2022-08-15T18:17:03Z | - |
dc.date.issued | 2021 | - |
dc.identifier.issn | 13824090 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/900 | - |
dc.description.abstract | In this paper we investigate the distribution of degrees of the least common multiples of random subsets of monic polynomials of degree n in Fq[ t]. We consider two different probabilistic models and find the concentration of degrees around the corresponding expectations when q→ ∞ or n→ ∞. | en |
dc.relation.ispartof | Ramanujan Journal | en |
dc.subject | Finite fields | en |
dc.subject | Function fields | en |
dc.subject | Least common multiple | en |
dc.subject | Random sets | en |
dc.title | The least common multiple of random sets in polynomial rings over finite fields | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s11139-020-00357-9 | - |
dc.identifier.scopus | 2-s2.0-85102352811 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85102352811 | - |
dc.contributor.affiliation | Algebra and Mathematical Logic | en_US |
dc.description.rank | M21 | en_US |
dc.relation.firstpage | 13 | en |
dc.relation.lastpage | 23 | en |
dc.relation.volume | 55 | en |
dc.relation.issue | 1 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Algebra and Mathematical Logic | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
1
checked on Nov 10, 2024
Page view(s)
12
checked on Nov 14, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.