Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/898
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Mladenović, Pavle | en_US |
dc.date.accessioned | 2022-08-15T18:08:24Z | - |
dc.date.available | 2022-08-15T18:08:24Z | - |
dc.date.issued | 2002-01-01 | - |
dc.identifier.issn | 03862194 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/898 | - |
dc.description.abstract | Let Ωn be the set of all permutations of the set Nn = {1, 2,..., n} and let us suppose that each permutation ω = (a1,..., an) ∈ n has probability 1/n!. For ω = (a1,..., an) let Xnj = |aj -aj+1|, j ∈ Nn, an+1 = a1, Mn = max{Xn1,...,Xnn}. We prove herein that the random variable Mn has asymptotically the Weibull distribution, and give some remarks on the domains of attraction of the Fréchet and Weibull extreme value distributions. | en |
dc.relation.ispartof | Proceedings of the Japan Academy Series A: Mathematical Sciences | en |
dc.subject | Domains of attraction | en |
dc.subject | Extreme value distributions | en |
dc.subject | Leadbetter's mixing condition | en |
dc.subject | Maximum of random sequence | en |
dc.subject | Random permutations | en |
dc.title | A note on random permutations and extreme value distributions | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.3792/pjaa.78.157 | - |
dc.identifier.scopus | 2-s2.0-0036823248 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/0036823248 | - |
dc.contributor.affiliation | Probability and Mathematical Statistics | en_US |
dc.relation.firstpage | 157 | en |
dc.relation.lastpage | 160 | en |
dc.relation.volume | 78 | en |
dc.relation.issue | 8 | en |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Probability and Statistics | - |
Appears in Collections: | Research outputs |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.