Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/898
DC FieldValueLanguage
dc.contributor.authorMladenović, Pavleen_US
dc.date.accessioned2022-08-15T18:08:24Z-
dc.date.available2022-08-15T18:08:24Z-
dc.date.issued2002-01-01-
dc.identifier.issn03862194en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/898-
dc.description.abstractLet Ωn be the set of all permutations of the set Nn = {1, 2,..., n} and let us suppose that each permutation ω = (a1,..., an) ∈ n has probability 1/n!. For ω = (a1,..., an) let Xnj = |aj -aj+1|, j ∈ Nn, an+1 = a1, Mn = max{Xn1,...,Xnn}. We prove herein that the random variable Mn has asymptotically the Weibull distribution, and give some remarks on the domains of attraction of the Fréchet and Weibull extreme value distributions.en
dc.relation.ispartofProceedings of the Japan Academy Series A: Mathematical Sciencesen
dc.subjectDomains of attractionen
dc.subjectExtreme value distributionsen
dc.subjectLeadbetter's mixing conditionen
dc.subjectMaximum of random sequenceen
dc.subjectRandom permutationsen
dc.titleA note on random permutations and extreme value distributionsen_US
dc.typeArticleen_US
dc.identifier.doi10.3792/pjaa.78.157-
dc.identifier.scopus2-s2.0-0036823248-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/0036823248-
dc.contributor.affiliationProbability and Mathematical Statisticsen_US
dc.relation.firstpage157en
dc.relation.lastpage160en
dc.relation.volume78en
dc.relation.issue8en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptProbability and Mathematical Statistics-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

4
checked on Nov 8, 2024

Page view(s)

14
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.