Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/894
DC FieldValueLanguage
dc.contributor.authorMladenović, Pavleen_US
dc.contributor.authorPiterbarg, Vladimiren_US
dc.date.accessioned2022-08-15T18:08:24Z-
dc.date.available2022-08-15T18:08:24Z-
dc.date.issued2008-03-01-
dc.identifier.issn01677152en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/894-
dc.description.abstractLet (X n) be a sequence of possibly dependent random variables with the same marginal distribution function F, such that 1 - F (x) = x - α L (x), α > 0, where L (x) is a slowly varying function. In this paper the Hill estimator of the exponent of regular variation based on a sample with missing observations from the sequence (X n) is considered. The asymptotic consistency was proved under some general conditions. This extends results of Hsing [1991. On tail index estimation using dependent data. Ann. Statist. 19, 1547-1569]. © 2007 Elsevier B.V. All rights reserved.en
dc.relation.ispartofStatistics and Probability Lettersen
dc.subjectMissing observationsen
dc.subjectOrder statisticsen
dc.subjectParameter estimationen
dc.subjectRegular variationen
dc.titleOn estimation of the exponent of regular variation using a sample with missing observationsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.spl.2007.07.005-
dc.identifier.scopus2-s2.0-39149117365-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/39149117365-
dc.contributor.affiliationProbability and Mathematical Statisticsen_US
dc.relation.firstpage327en
dc.relation.lastpage335en
dc.relation.volume78en
dc.relation.issue4en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptProbability and Mathematical Statistics-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

4
checked on Nov 7, 2024

Page view(s)

6
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.