Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/893
DC FieldValueLanguage
dc.contributor.authorRajab, Rima Sheikhen_US
dc.contributor.authorDražić, Milanen_US
dc.contributor.authorMladenović, Nenaden_US
dc.contributor.authorMladenović, Pavleen_US
dc.contributor.authorYu, Kemingen_US
dc.date.accessioned2022-08-15T18:08:24Z-
dc.date.available2022-08-15T18:08:24Z-
dc.date.issued2015-11-01-
dc.identifier.issn09255001en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/893-
dc.description.abstractQuantile regression is an increasingly important topic in statistical analysis. However, fitting censored quantile regression is hard to solve numerically because the objective function to be minimized is not convex nor concave in regressors. Performance of standard methods is not satisfactory, particularly if a high degree of censoring is present. The usual approach is to simplify (linearize) estimator function, and to show theoretically that such approximation converges to optimal values. In this paper, we suggest a new approach, to solve optimization problem (nonlinear, nonconvex, and nondifferentiable) directly. Our method is based on variable neighborhood search approach, a recent successful technique for solving global optimization problems. The presented results indicate that our method can improve quality of censored quantizing regressors estimator considerably.en
dc.relation.ispartofJournal of Global Optimizationen
dc.subjectCensored regressionen
dc.subjectGlobal optimizationen
dc.subjectMetaheuristicsen
dc.subjectPowell estimatoren
dc.subjectQuantile regressionen
dc.subjectVariable neighborhood searchen
dc.titleFitting censored quantile regression by variable neighborhood searchen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10898-015-0311-6-
dc.identifier.scopus2-s2.0-84943352062-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84943352062-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.contributor.affiliationProbability and Mathematical Statisticsen_US
dc.relation.firstpage481en
dc.relation.lastpage500en
dc.relation.volume63en
dc.relation.issue3en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.deptProbability and Mathematical Statistics-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 7, 2024

Page view(s)

7
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.