Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/893
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Rajab, Rima Sheikh | en_US |
dc.contributor.author | Dražić, Milan | en_US |
dc.contributor.author | Mladenović, Nenad | en_US |
dc.contributor.author | Mladenović, Pavle | en_US |
dc.contributor.author | Yu, Keming | en_US |
dc.date.accessioned | 2022-08-15T18:08:24Z | - |
dc.date.available | 2022-08-15T18:08:24Z | - |
dc.date.issued | 2015-11-01 | - |
dc.identifier.issn | 09255001 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/893 | - |
dc.description.abstract | Quantile regression is an increasingly important topic in statistical analysis. However, fitting censored quantile regression is hard to solve numerically because the objective function to be minimized is not convex nor concave in regressors. Performance of standard methods is not satisfactory, particularly if a high degree of censoring is present. The usual approach is to simplify (linearize) estimator function, and to show theoretically that such approximation converges to optimal values. In this paper, we suggest a new approach, to solve optimization problem (nonlinear, nonconvex, and nondifferentiable) directly. Our method is based on variable neighborhood search approach, a recent successful technique for solving global optimization problems. The presented results indicate that our method can improve quality of censored quantizing regressors estimator considerably. | en |
dc.relation.ispartof | Journal of Global Optimization | en |
dc.subject | Censored regression | en |
dc.subject | Global optimization | en |
dc.subject | Metaheuristics | en |
dc.subject | Powell estimator | en |
dc.subject | Quantile regression | en |
dc.subject | Variable neighborhood search | en |
dc.title | Fitting censored quantile regression by variable neighborhood search | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s10898-015-0311-6 | - |
dc.identifier.scopus | 2-s2.0-84943352062 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/84943352062 | - |
dc.contributor.affiliation | Numerical Mathematics and Optimization | en_US |
dc.contributor.affiliation | Probability and Mathematical Statistics | en_US |
dc.relation.firstpage | 481 | en |
dc.relation.lastpage | 500 | en |
dc.relation.volume | 63 | en |
dc.relation.issue | 3 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Numerical Mathematics and Optimization | - |
crisitem.author.dept | Probability and Mathematical Statistics | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
1
checked on Nov 7, 2024
Page view(s)
7
checked on Nov 14, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.