Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/885
DC FieldValueLanguage
dc.contributor.authorMladenović, Pavleen_US
dc.contributor.authorŽivadinović, Lenkaen_US
dc.date.accessioned2022-08-15T18:08:23Z-
dc.date.available2022-08-15T18:08:23Z-
dc.date.issued2015-06-18-
dc.identifier.issn03610926en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/885-
dc.description.abstractLet (Xn)n1 be the uniform AR(1) process with parameter r 2, and (cn)n1 a 0-1 sequence such that the limit exists. Let be the maximum of those Xks for which k n and ck = 1, and Mn = max {X1,., Xn}. We prove that the limit distribution of the random vector as n → ∞ is not uniquely determined by the limit value p. A simulation study and analysis of a simulated data set are presented. The cases when the partial maximum is determined by certain point processes are included in the simulation study.en
dc.relation.ispartofCommunications in Statistics - Theory and Methodsen
dc.subjectExtreme valuesen
dc.subjectMissing observationsen
dc.subjectUniform AR(1) processesen
dc.titleUniform AR(1) processes and maxima on partial samplesen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/03610926.2013.786785-
dc.identifier.scopus2-s2.0-84934343944-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84934343944-
dc.contributor.affiliationProbability and Mathematical Statisticsen_US
dc.relation.firstpage2546en
dc.relation.lastpage2563en
dc.relation.volume44en
dc.relation.issue12en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptProbability and Mathematical Statistics-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

5
checked on Nov 7, 2024

Page view(s)

10
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.