Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/884
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Mladenović, Pavle | en_US |
dc.contributor.author | Vukmirović, Jovan | en_US |
dc.date.accessioned | 2022-08-15T18:08:23Z | - |
dc.date.available | 2022-08-15T18:08:23Z | - |
dc.date.issued | 2010-03-01 | - |
dc.identifier.issn | 0022247X | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/884 | - |
dc.description.abstract | Let Xn 1*, ..., Xn n* be independent random variables with the common negative binomial distribution with parameters r > 0 and 1 / n, where r is not necessarily an integer. We determine the limiting distribution of the random variable Mn* = max {Xn 1*, ..., Xn n*} as n → ∞, corresponding normalizing constants and the rate of convergence. For an integer r the connection with certain waiting time problems is indicated. © 2009 Elsevier Inc. All rights reserved. | en |
dc.relation.ispartof | Journal of Mathematical Analysis and Applications | en |
dc.subject | Extreme values | en |
dc.subject | Gamma function | en |
dc.subject | Negative binomial distribution | en |
dc.subject | Rates of convergence | en |
dc.title | Rates of convergence in certain limit theorem for extreme values | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.jmaa.2009.08.044 | - |
dc.identifier.scopus | 2-s2.0-70449434680 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/70449434680 | - |
dc.contributor.affiliation | Probability and Mathematical Statistics | en_US |
dc.relation.firstpage | 287 | en |
dc.relation.lastpage | 295 | en |
dc.relation.volume | 363 | en |
dc.relation.issue | 1 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Probability and Mathematical Statistics | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
1
checked on Nov 10, 2024
Page view(s)
7
checked on Nov 14, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.