Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/884
DC FieldValueLanguage
dc.contributor.authorMladenović, Pavleen_US
dc.contributor.authorVukmirović, Jovanen_US
dc.date.accessioned2022-08-15T18:08:23Z-
dc.date.available2022-08-15T18:08:23Z-
dc.date.issued2010-03-01-
dc.identifier.issn0022247Xen
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/884-
dc.description.abstractLet Xn 1*, ..., Xn n* be independent random variables with the common negative binomial distribution with parameters r > 0 and 1 / n, where r is not necessarily an integer. We determine the limiting distribution of the random variable Mn* = max {Xn 1*, ..., Xn n*} as n → ∞, corresponding normalizing constants and the rate of convergence. For an integer r the connection with certain waiting time problems is indicated. © 2009 Elsevier Inc. All rights reserved.en
dc.relation.ispartofJournal of Mathematical Analysis and Applicationsen
dc.subjectExtreme valuesen
dc.subjectGamma functionen
dc.subjectNegative binomial distributionen
dc.subjectRates of convergenceen
dc.titleRates of convergence in certain limit theorem for extreme valuesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jmaa.2009.08.044-
dc.identifier.scopus2-s2.0-70449434680-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/70449434680-
dc.contributor.affiliationProbability and Mathematical Statisticsen_US
dc.relation.firstpage287en
dc.relation.lastpage295en
dc.relation.volume363en
dc.relation.issue1en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptProbability and Mathematical Statistics-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 10, 2024

Page view(s)

7
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.