Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/882
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Mladenović, Pavle | en_US |
dc.date.accessioned | 2022-08-15T18:08:22Z | - |
dc.date.available | 2022-08-15T18:08:22Z | - |
dc.date.issued | 2005-01-01 | - |
dc.identifier.issn | 0040585X | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/882 | - |
dc.description.abstract | Let (k n ) be a sequence of positive integers such that k n → ∞ as n → ∞. Let X n1 *,..., X nkn , n ∈ N, be a double array of random variables such that for each n the random variables X n1 *,..., X nkn * are independent with a common distribution function F n , and let us denote M n * = max{X n1 *,..., X nkn *}. We consider an example of double array random variables connected with a certain combinatorial waiting time problem (including both dependent and independent cases), where k n = n for all n and the limiting distribution function for M n * is Λ(X) = exp(-e -x ), although none of the distribution functions Fn belongs to the domain of attraction D(Λ). We also generalize the Mejzler-de Haan theorem and give the necessary and sufficient conditions for the sequence (F n ) under which there exist sequences a n > 0 and b n ∈ R, n ∈ N, such that F nkn (a n x+b n ) → exp(-e -x ) as n → ∞ for every real x. | en |
dc.relation.ispartof | Theory of Probability and its Applications | en |
dc.subject | Domain of attraction | en |
dc.subject | Double array | en |
dc.subject | Double exponential distribution | en |
dc.subject | Extreme value distributions | en |
dc.subject | Regular variation | en |
dc.title | A generalization of the Mejzler-de Haan theorem | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1137/S0040585X97981561 | - |
dc.identifier.scopus | 2-s2.0-33646045873 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/33646045873 | - |
dc.contributor.affiliation | Probability and Mathematical Statistics | en_US |
dc.relation.firstpage | 141 | en |
dc.relation.lastpage | 153 | en |
dc.relation.volume | 50 | en |
dc.relation.issue | 1 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Probability and Mathematical Statistics | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
6
checked on Nov 7, 2024
Page view(s)
6
checked on Nov 14, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.