Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/878
DC FieldValueLanguage
dc.contributor.authorĐorić, Mirjanaen_US
dc.contributor.authorMunteanu, Marian Ioanen_US
dc.date.accessioned2022-08-15T17:57:41Z-
dc.date.available2022-08-15T17:57:41Z-
dc.date.issued2020-08-01-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/878-
dc.description.abstractDue to the remarkable property of the seven-dimensional unit sphere to be a Sasakian manifold with the almost contact structure (ϕ, ξ, η), we study its five-dimensional contact CR-submanifolds, which are the analogue of CR-submanifolds in (almost) Kählerian manifolds. In the case when the structure vector field ξ is tangent to M, the tangent bundle of contact CR-submanifold M can be decomposed as T(M) = H(M) ⊕ E(M) ⊕ Rξ, where H(M) is invariant and E(M) is anti-invariant with respect to ϕ. On this occasion we obtain a complete classification of five-dimensional proper contact CR-submanifolds in S7(1) whose second fundamental form restricted to H(M) and E(M) vanishes identically and we prove that they can be decomposed as (multiply) warped products of spheres.en
dc.relation.ispartofMathematicsen
dc.subjectContact CR-submanifolden
dc.subjectNearly totally geodesic submanifolden
dc.subjectSeven-dimensional unit sphereen
dc.subjectWarped producten
dc.titleFive-dimensional contact CR-submanifolds in S<sup>7</sup>(1)en_US
dc.typeArticleen_US
dc.identifier.doi10.3390/MATH8081278-
dc.identifier.scopus2-s2.0-85090089924-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85090089924-
dc.contributor.affiliationGeometryen_US
dc.relation.volume8en
dc.relation.issue8en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptGeometry-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 15, 2024

Page view(s)

6
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.