Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/876
DC FieldValueLanguage
dc.contributor.authorBokan, Nedaen_US
dc.contributor.authorĐorić, Mirjanaen_US
dc.contributor.authorSimon, Udoen_US
dc.date.accessioned2022-08-15T17:57:40Z-
dc.date.available2022-08-15T17:57:40Z-
dc.date.issued2003-05-01-
dc.identifier.issn14226383en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/876-
dc.description.abstractSeveral authors have studied the Taylor expansion for the volume of geodesic balls under the exponential mapping of an analytic Riemannian manifold (M, g). A more general structure (M, D, g), where D is a torsion-free and Ricci-symmetric connection, appears in several geometric situations. We study the Taylor expansion in this case, where all metric notions are Riemannian, while now the exponential mapping is induced from the connection D. We give many applications, in particular in different hypersurface theories.en
dc.relation.ispartofResults in Mathematicsen
dc.subjectAffine Differential Geometryen
dc.subjectDifference Tensoren
dc.subjectElliptic Paraboloiden
dc.subjectGeodesic Ballen
dc.subjectWeingarten Operatoren
dc.titleGeometric Structures as Determined by the Volume of Generalized Geodesic Ballsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/BF03322738-
dc.identifier.scopus2-s2.0-52449087580-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/52449087580-
dc.contributor.affiliationGeometryen_US
dc.relation.firstpage205en
dc.relation.lastpage234en
dc.relation.volume43en
dc.relation.issue3-4en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptGeometry-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

3
checked on Nov 11, 2024

Page view(s)

8
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.