Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/875
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Đorić, Mirjana | en_US |
dc.contributor.author | Okumura, Masafumi | en_US |
dc.date.accessioned | 2022-08-15T17:57:40Z | - |
dc.date.available | 2022-08-15T17:57:40Z | - |
dc.date.issued | 2003-01-01 | - |
dc.identifier.issn | 00333883 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/875 | - |
dc.description.abstract | Let M be an n-dimensional CR submanifold of CR dimension n-1/2 of complex projective space. In this case M is necessarily odd-dimensional and there exists a unit vector field ξ1 normal to M such that JT(M) ⊂ T(M) ⊕ ξ1. Under the assumption that ξ1 is parallel with respect to the normal connection, we bring into use an integral formula which leads to an inequality between the Ricci tensor, the scalar curvature and the mean curvature of M. Using this inequality, we provide a sufficient condition for the submanifold M to be a tube over a totally geodesic complex subspace of Pn+k/2 (C). | en |
dc.relation.ispartof | Publicationes Mathematicae | en |
dc.subject | Complex projective space | en |
dc.subject | CR submanifold | en |
dc.subject | Mean curvature | en |
dc.subject | Ricci tensor | en |
dc.subject | Scalar curvature | en |
dc.title | Certain application of an integral formula to CR submanifold of complex projective space | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.5486/PMD.2003.2734 | - |
dc.identifier.scopus | 2-s2.0-0037229570 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/0037229570 | - |
dc.contributor.affiliation | Geometry | en_US |
dc.relation.firstpage | 213 | en |
dc.relation.lastpage | 225 | en |
dc.relation.volume | 62 | en |
dc.relation.issue | 1-2 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Geometry | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
5
checked on Nov 9, 2024
Page view(s)
12
checked on Nov 15, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.