Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/875
DC FieldValueLanguage
dc.contributor.authorĐorić, Mirjanaen_US
dc.contributor.authorOkumura, Masafumien_US
dc.date.accessioned2022-08-15T17:57:40Z-
dc.date.available2022-08-15T17:57:40Z-
dc.date.issued2003-01-01-
dc.identifier.issn00333883en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/875-
dc.description.abstractLet M be an n-dimensional CR submanifold of CR dimension n-1/2 of complex projective space. In this case M is necessarily odd-dimensional and there exists a unit vector field ξ1 normal to M such that JT(M) ⊂ T(M) ⊕ ξ1. Under the assumption that ξ1 is parallel with respect to the normal connection, we bring into use an integral formula which leads to an inequality between the Ricci tensor, the scalar curvature and the mean curvature of M. Using this inequality, we provide a sufficient condition for the submanifold M to be a tube over a totally geodesic complex subspace of Pn+k/2 (C).en
dc.relation.ispartofPublicationes Mathematicaeen
dc.subjectComplex projective spaceen
dc.subjectCR submanifolden
dc.subjectMean curvatureen
dc.subjectRicci tensoren
dc.subjectScalar curvatureen
dc.titleCertain application of an integral formula to CR submanifold of complex projective spaceen_US
dc.typeArticleen_US
dc.identifier.doi10.5486/PMD.2003.2734-
dc.identifier.scopus2-s2.0-0037229570-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/0037229570-
dc.contributor.affiliationGeometryen_US
dc.relation.firstpage213en
dc.relation.lastpage225en
dc.relation.volume62en
dc.relation.issue1-2en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptGeometry-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

5
checked on Nov 9, 2024

Page view(s)

12
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.