Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/874
DC FieldValueLanguage
dc.contributor.authorĐorić, Mirjanaen_US
dc.contributor.authorMunteanu, Marian Ioanen_US
dc.contributor.authorVrancken, Lucen_US
dc.date.accessioned2022-08-15T17:57:40Z-
dc.date.available2022-08-15T17:57:40Z-
dc.date.issued2017-11-01-
dc.identifier.issn0025584Xen
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/874-
dc.description.abstractThe analogue of CR -submanifolds in (almost) Kählerian manifolds is the concept of contact CR -submanifolds in Sasakian manifolds. These are submanifolds for which the structure vector field ξ is tangent to the submanifold and for which the tangent bundle of M can be decomposed as T(M)=H(M)⊕E(M)⊕Rξ, where H(M) is invariant with respect to the endomorphism φ and E(M) is antiinvariant with respect to φ. The lowest possible dimension for M in which this decomposition is non trivial is the dimension 4. In this paper we obtain a complete classification of four-dimensional contact CR -submanifolds in S5(1) and S7(1) for which the second fundamental form restricted to H(M) and E(M) vanishes identically.en_US
dc.language.isoenen_US
dc.publisherWileyen_US
dc.relation.ispartofMathematische Nachrichtenen_US
dc.subject53B25en_US
dc.subject53C15en_US
dc.subject53C25en_US
dc.subjectContact CR-submanifolden_US
dc.subjectnearly totally geodesic submanifolden_US
dc.subjectseven-dimensional unit sphereen_US
dc.titleFour-dimensional contact CR-submanifolds in S7(1)en_US
dc.typeArticleen_US
dc.identifier.doi10.1002/mana.201600437-
dc.identifier.scopus2-s2.0-85017198400-
dc.identifier.isi000414334700009-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85017198400-
dc.contributor.affiliationGeometryen_US
dc.relation.issn0025-584Xen_US
dc.description.rankM22en_US
dc.relation.firstpage2585en_US
dc.relation.lastpage2596en_US
dc.relation.volume290en_US
dc.relation.issue16en_US
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
crisitem.author.deptGeometry-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

3
checked on Oct 24, 2025

Page view(s)

11
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.