Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/874
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Đorić, Mirjana | en_US |
dc.contributor.author | Munteanu, Marian Ioan | en_US |
dc.contributor.author | Vrancken, Luc | en_US |
dc.date.accessioned | 2022-08-15T17:57:40Z | - |
dc.date.available | 2022-08-15T17:57:40Z | - |
dc.date.issued | 2017-11-01 | - |
dc.identifier.issn | 0025584X | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/874 | - |
dc.description.abstract | The analogue of CR -submanifolds in (almost) Kählerian manifolds is the concept of contact CR -submanifolds in Sasakian manifolds. These are submanifolds for which the structure vector field ξ is tangent to the submanifold and for which the tangent bundle of M can be decomposed as T(M)=H(M)⊕E(M)⊕Rξ, where H(M) is invariant with respect to the endomorphism φ and E(M) is antiinvariant with respect to φ. The lowest possible dimension for M in which this decomposition is non trivial is the dimension 4. In this paper we obtain a complete classification of four-dimensional contact CR -submanifolds in S5(1) and S7(1) for which the second fundamental form restricted to H(M) and E(M) vanishes identically. | en |
dc.relation.ispartof | Mathematische Nachrichten | en |
dc.subject | 53B25 | en |
dc.subject | 53C15 | en |
dc.subject | 53C25 | en |
dc.subject | Contact CR-submanifold | en |
dc.subject | nearly totally geodesic submanifold | en |
dc.subject | seven-dimensional unit sphere | en |
dc.title | Four-dimensional contact CR-submanifolds in S7(1) | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1002/mana.201600437 | - |
dc.identifier.scopus | 2-s2.0-85017198400 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85017198400 | - |
dc.contributor.affiliation | Geometry | en_US |
dc.relation.firstpage | 2585 | en |
dc.relation.lastpage | 2596 | en |
dc.relation.volume | 290 | en |
dc.relation.issue | 16 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Geometry | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
3
checked on Nov 9, 2024
Page view(s)
11
checked on Nov 15, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.