Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/874
DC FieldValueLanguage
dc.contributor.authorĐorić, Mirjanaen_US
dc.contributor.authorMunteanu, Marian Ioanen_US
dc.contributor.authorVrancken, Lucen_US
dc.date.accessioned2022-08-15T17:57:40Z-
dc.date.available2022-08-15T17:57:40Z-
dc.date.issued2017-11-01-
dc.identifier.issn0025584Xen
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/874-
dc.description.abstractThe analogue of CR -submanifolds in (almost) Kählerian manifolds is the concept of contact CR -submanifolds in Sasakian manifolds. These are submanifolds for which the structure vector field ξ is tangent to the submanifold and for which the tangent bundle of M can be decomposed as T(M)=H(M)⊕E(M)⊕Rξ, where H(M) is invariant with respect to the endomorphism φ and E(M) is antiinvariant with respect to φ. The lowest possible dimension for M in which this decomposition is non trivial is the dimension 4. In this paper we obtain a complete classification of four-dimensional contact CR -submanifolds in S5(1) and S7(1) for which the second fundamental form restricted to H(M) and E(M) vanishes identically.en
dc.relation.ispartofMathematische Nachrichtenen
dc.subject53B25en
dc.subject53C15en
dc.subject53C25en
dc.subjectContact CR-submanifolden
dc.subjectnearly totally geodesic submanifolden
dc.subjectseven-dimensional unit sphereen
dc.titleFour-dimensional contact CR-submanifolds in S7(1)en_US
dc.typeArticleen_US
dc.identifier.doi10.1002/mana.201600437-
dc.identifier.scopus2-s2.0-85017198400-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85017198400-
dc.contributor.affiliationGeometryen_US
dc.relation.firstpage2585en
dc.relation.lastpage2596en
dc.relation.volume290en
dc.relation.issue16en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptGeometry-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

3
checked on Nov 9, 2024

Page view(s)

11
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.