Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/872
DC FieldValueLanguage
dc.contributor.authorBueken, Peteren_US
dc.contributor.authorĐorić, Mirjanaen_US
dc.date.accessioned2022-08-15T17:57:40Z-
dc.date.available2022-08-15T17:57:40Z-
dc.date.issued2000-01-01-
dc.identifier.issn0232704Xen
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/872-
dc.description.abstractIn this paper we investigate the existence of three-dimensional Lorentzian manifolds which are curvature homogeneous up to order one but which are not locally homogeneous, and we obtain a complete local classification of these spaces. As a corollary we determine, for each Segre type of the Ricci curvature tensor, the smallest k ∈ N for which curvature homogeneity up to order k guarantees local homogeneity of the three-dimensional manifold under consideration.en
dc.relation.ispartofAnnals of Global Analysis and Geometryen
dc.subjectConstant Ricci eigenvaluesen
dc.subjectCurvature homogeneous Lorentzian manifoldsen
dc.subjectHomogeneous manifoldsen
dc.titleThree-Dimensional Lorentz Metrics and Curvature Homogeneity of Order Oneen_US
dc.typeArticleen_US
dc.identifier.doi10.1023/A:1006612120550-
dc.identifier.scopus2-s2.0-0042188402-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/0042188402-
dc.contributor.affiliationGeometryen_US
dc.relation.firstpage85en
dc.relation.lastpage103en
dc.relation.volume18en
dc.relation.issue1en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptGeometry-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

32
checked on Nov 8, 2024

Page view(s)

11
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.