Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/871
DC FieldValueLanguage
dc.contributor.authorĐorić, Mirjanaen_US
dc.contributor.authorMunteanu, Marian Ioanen_US
dc.date.accessioned2022-08-15T17:57:40Z-
dc.date.available2022-08-15T17:57:40Z-
dc.date.issued2020-01-01-
dc.identifier.issn02714132en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/871-
dc.description.abstractThe odd-dimensional analogue of CR-submanifolds in Kählerian manifolds is the concept of contact CR-submanifolds in Sasakian manifolds. We present here several examples of four-dimensional and five-dimensional contact CR-submanifolds of product and warped product type of seven-dimensional unit sphere, which are nearly totally geodesic, minimal and which satisfy the equality sign in some Chen type inequalities.en
dc.publisherAmerican Mathematical Societyen_US
dc.relation.ispartofContemporary Mathematicsen_US
dc.subjectChen’s invariantsen
dc.subjectcontact CR-submanifolden
dc.subjectNearly totally geodesic submanifolden
dc.subjectSeven-dimensional unit sphereen
dc.subjectWarped producten
dc.titleOn certain contact cr-submanifolds in S<sup>7</sup>en_US
dc.typeConference Objecten_US
dc.relation.conferenceAMS Special Session on Geometry of Submanifolds (2018 ; Ann Arbor)en_US
dc.relation.publicationProceedings of AMS Special Session on Geometry of Submanifolds, 2018en_US
dc.identifier.doi10.1090/conm/756/15200-
dc.identifier.scopus2-s2.0-85090091472-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85090091472-
dc.contributor.affiliationGeometryen_US
dc.relation.isbn978-1-4704-5092-2en_US
dc.description.rankM33en_US
dc.relation.firstpage111en_US
dc.relation.lastpage120en_US
dc.relation.volume756en_US
item.cerifentitytypePublications-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.deptGeometry-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

1
checked on Sep 26, 2025

Page view(s)

22
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.