Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/870
DC FieldValueLanguage
dc.contributor.authorDimitrić, Ivkoen_US
dc.contributor.authorĐorić, Mirjanaen_US
dc.date.accessioned2022-08-15T17:57:40Z-
dc.date.available2022-08-15T17:57:40Z-
dc.date.issued2020-01-01-
dc.identifier.issn02714132en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/870-
dc.description.abstractWe prove some nonexistence results for certain families of CR-submanifolds of Chen-type two in complex space forms. For example, there exist no holomorphic submanifolds of the complex hyperbolic space which are of 2-type via the standard embedding by projectors. This is in contrast to the situation in complex projective space, which is known to contain Einstein-Kähler submanifolds of 2-type. We further show that there are no mass-symmetric ruled real hypersurfaces in ℂQm (4c) of Chen-type 2. Additionally, we characterize mass-symmetric totally real submanifolds of 2-type in terms of detailed intrinsic and extrinsic conditions and derive some corollaries for Lagrangian submanifolds.en
dc.relation.ispartofContemporary Mathematicsen_US
dc.subjectComplex space formen
dc.subjectCR-submanifolden
dc.subjectFinite Chen-typeen
dc.subjectLaplacianen
dc.titleCR-submanifolds of chen-type two in non-flat complex space formsen_US
dc.typeConference Paperen_US
dc.relation.publicationGeometry of Submainfoldsen_US
dc.identifier.doi10.1090/conm/756/15199-
dc.identifier.scopus2-s2.0-85097819559-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85097819559-
dc.contributor.affiliationGeometryen_US
dc.relation.isbn978-1-4704-5092-2en_US
dc.relation.doihttps://doi.org/10.1090/conm/756en_US
dc.relation.firstpage97en_US
dc.relation.lastpage110en_US
dc.relation.volume756en_US
item.fulltextNo Fulltext-
item.openairetypeConference Paper-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptGeometry-
Appears in Collections:Research outputs
Show simple item record

Page view(s)

18
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.