Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/868
DC FieldValueLanguage
dc.contributor.authorĐorić, Mirjanaen_US
dc.contributor.authorOkumura, Masafumien_US
dc.date.accessioned2022-08-15T17:57:39Z-
dc.date.available2022-08-15T17:57:39Z-
dc.date.issued2008-04-01-
dc.identifier.issn09262245en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/868-
dc.description.abstractWe study m-dimensional real submanifolds with (m - 1)-dimensional maximal holomorphic tangent subspace in complex space forms. On such a manifold there exists an almost contact structure which is naturally induced from the ambient space and in this paper we study the anti-commutative condition of the almost contact structure and the second fundamental form of these submanifolds and we characterize certain model spaces in complex space forms. © 2007 Elsevier B.V. All rights reserved.en
dc.relation.ispartofDifferential Geometry and its Applicationen
dc.subjectAlmost contact metric structureen
dc.subjectComplex space formen
dc.subjectCR submanifolden
dc.subjectSecond fundamental formen
dc.titleCertain CR submanifolds of maximal CR dimension of complex space formsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.difgeo.2007.11.013-
dc.identifier.scopus2-s2.0-40949115523-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/40949115523-
dc.contributor.affiliationGeometryen_US
dc.relation.firstpage208en
dc.relation.lastpage217en
dc.relation.volume26en
dc.relation.issue2en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptGeometry-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

11
checked on Nov 8, 2024

Page view(s)

10
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.