Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/866
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Đorić, Mirjana | en_US |
dc.contributor.author | Okumura, Masafumi | en_US |
dc.date.accessioned | 2022-08-15T17:57:39Z | - |
dc.date.available | 2022-08-15T17:57:39Z | - |
dc.date.issued | 2009-01-01 | - |
dc.identifier.issn | 00212172 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/866 | - |
dc.description.abstract | We study m-dimensional real submanifolds M with (m - 1)-dimensional maximal holomorphic tangent subspace in complex projective space. On these manifolds there exists an almost contact structure F which is naturally induced from the ambient space and in this paper we study the condition h(FX, Y) - h(X, FY) = g(FX, Y)η, η T ⊥(M), on the almost contact structure F and on the second fundamental form h of these submanifolds and we characterize certain model spaces in complex projective space. © 2008 Hebrew University Magnes Press. | en |
dc.relation.ispartof | Israel Journal of Mathematics | en |
dc.title | Certain condition on the second fundamental form of CR submanifolds of maximal CR dimension of complex projective space | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s11856-009-0003-3 | - |
dc.identifier.scopus | 2-s2.0-57849097802 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/57849097802 | - |
dc.contributor.affiliation | Geometry | en_US |
dc.relation.firstpage | 47 | en |
dc.relation.lastpage | 59 | en |
dc.relation.volume | 169 | en |
dc.relation.issue | 1 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Geometry | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
6
checked on Nov 15, 2024
Page view(s)
9
checked on Nov 15, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.