Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/865
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Đorić, Mirjana | en_US |
dc.contributor.author | Okumura, M. | en_US |
dc.date.accessioned | 2022-08-15T17:57:39Z | - |
dc.date.available | 2022-08-15T17:57:39Z | - |
dc.date.issued | 2018-10-01 | - |
dc.identifier.issn | 02365294 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/865 | - |
dc.description.abstract | We prove that there do not exist CR submanifolds Mn of maximal CR dimension of a complex projective space Pn+p2(C) with flat normal connection D of M, when the distinguished normal vector field is parallel with respect to D. If D is lift-flat, then there exists a totally geodesic complex projective subspace Pn+12(C) of Pn+p2(C) such that M is a real hypersurface of Pn+12(C). | en |
dc.relation.ispartof | Acta Mathematica Hungarica | en |
dc.subject | complex projective space | en |
dc.subject | CR submanifold | en |
dc.subject | flat and lift-flat normal connection | en |
dc.subject | normal curvature | en |
dc.title | Normal curvature of CR submanifolds of maximal CR dimension of the complex projective space | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s10474-018-0821-z | - |
dc.identifier.scopus | 2-s2.0-85045922062 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85045922062 | - |
dc.contributor.affiliation | Geometry | en_US |
dc.relation.firstpage | 82 | en |
dc.relation.lastpage | 90 | en |
dc.relation.volume | 156 | en |
dc.relation.issue | 1 | en |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Geometry | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
1
checked on Mar 28, 2025
Page view(s)
18
checked on Jan 19, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.