Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/863
DC FieldValueLanguage
dc.contributor.authorĐorić, Mirjanaen_US
dc.contributor.authorVrancken, Lucen_US
dc.date.accessioned2022-08-15T17:57:39Z-
dc.date.available2022-08-15T17:57:39Z-
dc.date.issued2010-02-01-
dc.identifier.issn03930440en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/863-
dc.description.abstractIn this paper, we study totally real submanifolds of the nearly Kähler six-dimensional unit sphere. Since in this case also, parallel submanifolds are totally geodesic, we introduce a weaker condition, namely that for any tangent vector v〈 (∇ h) (v, v, v), J v 〉 = 0 . We obtain a complete classification of totally real three-dimensional submanifolds of S6 (1) satisfying the above condition. © 2009 Elsevier B.V. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofJournal of Geometry and Physicsen_US
dc.subjectJ-parallelen_US
dc.subjectLagrangian submanifolden_US
dc.subjectNearly Kähler six-sphereen_US
dc.subjectSecond fundamental formen_US
dc.subjectTotally real submanifolden_US
dc.titleOn J-parallel totally real three-dimensional submanifolds of S<sup>6</sup> (1)en_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.geomphys.2009.09.010-
dc.identifier.scopus2-s2.0-74149094500-
dc.identifier.isi000274760300003-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/74149094500-
dc.contributor.affiliationGeometryen_US
dc.relation.issn0393-0440en_US
dc.description.rankM22en_US
dc.relation.firstpage175en_US
dc.relation.lastpage181en_US
dc.relation.volume60en_US
dc.relation.issue2en_US
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
crisitem.author.deptGeometry-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

5
checked on Dec 3, 2025

Page view(s)

12
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.