Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/863
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Đorić, Mirjana | en_US |
dc.contributor.author | Vrancken, Luc | en_US |
dc.date.accessioned | 2022-08-15T17:57:39Z | - |
dc.date.available | 2022-08-15T17:57:39Z | - |
dc.date.issued | 2010-02-01 | - |
dc.identifier.issn | 03930440 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/863 | - |
dc.description.abstract | In this paper, we study totally real submanifolds of the nearly Kähler six-dimensional unit sphere. Since in this case also, parallel submanifolds are totally geodesic, we introduce a weaker condition, namely that for any tangent vector v〈 (∇ h) (v, v, v), J v 〉 = 0 . We obtain a complete classification of totally real three-dimensional submanifolds of S6 (1) satisfying the above condition. © 2009 Elsevier B.V. All rights reserved. | en |
dc.relation.ispartof | Journal of Geometry and Physics | en |
dc.subject | J-parallel | en |
dc.subject | Lagrangian submanifold | en |
dc.subject | Nearly Kähler six-sphere | en |
dc.subject | Second fundamental form | en |
dc.subject | Totally real submanifold | en |
dc.title | On J-parallel totally real three-dimensional submanifolds of S<sup>6</sup> (1) | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.geomphys.2009.09.010 | - |
dc.identifier.scopus | 2-s2.0-74149094500 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/74149094500 | - |
dc.contributor.affiliation | Geometry | en_US |
dc.relation.firstpage | 175 | en |
dc.relation.lastpage | 181 | en |
dc.relation.volume | 60 | en |
dc.relation.issue | 2 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Geometry | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
5
checked on Nov 9, 2024
Page view(s)
11
checked on Nov 15, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.