Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/860
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Đorić, Mirjana | en_US |
dc.contributor.author | Okumura, Masafumi | en_US |
dc.date.accessioned | 2022-08-15T17:57:38Z | - |
dc.date.available | 2022-08-15T17:57:38Z | - |
dc.date.issued | 2011-03-01 | - |
dc.identifier.issn | 16605446 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/860 | - |
dc.description.abstract | Real hypersurfaces of a complex manifold admit a naturally induced almost contact structure F′ from the almost complex structure of the ambient manifold. We prove that for any F′-invariant submanifold M of a geodesic hypersphere in a non-flat complex space form and of a horosphere in a complex hyperbolic space, its second fundamental form h satisfies the condition h(FX,Y)-h(X, FY)=g(FX,Y)η,X,Y ∈ T{box drawings light up and horizontal}(M), 0 ≠ ∈ T(M), which has been considered in [2] and [3]. © 2010 Springer Basel AG. | en |
dc.relation.ispartof | Mediterranean Journal of Mathematics | en |
dc.subject | almost contact metric structure | en |
dc.subject | complex space form | en |
dc.subject | CR submanifold | en |
dc.subject | Invariant submanifold | en |
dc.subject | real hypersurface | en |
dc.subject | second fundamental form | en |
dc.title | Invariant Submanifolds of Real Hypersurfaces of Complex Manifolds | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s00009-010-0067-7 | - |
dc.identifier.scopus | 2-s2.0-79751526657 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/79751526657 | - |
dc.contributor.affiliation | Geometry | en_US |
dc.relation.firstpage | 37 | en |
dc.relation.lastpage | 47 | en |
dc.relation.volume | 8 | en |
dc.relation.issue | 1 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Geometry | - |
Appears in Collections: | Research outputs |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.