Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/858
DC FieldValueLanguage
dc.contributor.authorĐorić, Mirjanaen_US
dc.contributor.authorVrancken, Lucen_US
dc.date.accessioned2022-08-15T17:57:38Z-
dc.date.available2022-08-15T17:57:38Z-
dc.date.issued2010-04-01-
dc.identifier.issn1615715Xen
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/858-
dc.description.abstractA six-dimensional unit sphere has an almost complex structure J defined by the vector cross product on the space of purely imaginary Cayley numbers, which makes S6 a nearly Khler manifold. In this paper, we study 3-dimensional CR submanifolds of S6(1), investigating certain geometric conditions. We show that if such a submanifold attains equality in Chen's inequality, it is always minimal. We recall that a classification of minimal 3-dimensional submanifolds was obtained in Djori, Vrancken, J. Geom. Phys. 56: 22792288, 2006. For 3-dimensional CR submanifolds, the restriction of the almost complex structure J to the tangent space automatically induces an almost contact structure on the submanifold. We prove that this structure is not Sasakian with respect to the induced metric. We also give an example from Hashimoto, Mashimo, J. Math. 28: 579591, 2005, see also Ejiri, Trans. Amer. Math. Soc. 297: 105124, 1986, of a tube around a superminimal almost complex curve in S6(1) for which this almost contact structure is Sasakian with respect to a constant scalar multiple of the induced metric. © 2010 de Gruyter.en_US
dc.language.isoenen_US
dc.publisherDe Gruyteren_US
dc.relation.ispartofAdvances in Geometryen_US
dc.subjectChen's inequalityen_US
dc.subjectCR submanifolden_US
dc.subjectNearly Kähler six-sphereen_US
dc.subjectSasakian structureen_US
dc.titleGeometric conditions on three-dimensional CR submanifolds in S<sup>6</sup>en_US
dc.typeArticleen_US
dc.identifier.doi10.1515/ADVGEOM.2010.003-
dc.identifier.scopus2-s2.0-77951606424-
dc.identifier.isi000276914400001-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/77951606424-
dc.contributor.affiliationGeometryen_US
dc.relation.issn1615-715Xen_US
dc.description.rankM22en_US
dc.relation.firstpage185en_US
dc.relation.lastpage196en_US
dc.relation.volume10en_US
dc.relation.issue2en_US
item.openairetypeArticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.deptGeometry-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

5
checked on Jan 9, 2026

Page view(s)

10
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.