Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/855
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Đorić, Mirjana | en_US |
dc.contributor.author | Okumura, Masafumi | en_US |
dc.date.accessioned | 2022-08-15T17:57:38Z | - |
dc.date.available | 2022-08-15T17:57:38Z | - |
dc.date.issued | 2011-01-01 | - |
dc.identifier.issn | 0232704X | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/855 | - |
dc.description.abstract | Studying the condition h(FX, Y)-h(X, FY)=g(FX, Y)η, 0 ≠ η ∈ T ⊥(M) on the almost contact structure F and on the second fundamental form h of n-dimensional real submanifolds M of complex hyperbolic space CHn+p/2 when their maximal holomorphic tangent subspace is (n - 1)-dimensional, we obtain the complete classification of such submanifolds M and we characterize certain model spaces in complex hyperbolic space. © 2010 Springer Science+Business Media B.V. | en |
dc.relation.ispartof | Annals of Global Analysis and Geometry | en |
dc.subject | Almost contact metric structure | en |
dc.subject | Complex hyperbolic space | en |
dc.subject | CR submanifold | en |
dc.subject | Second fundamental form | en |
dc.title | Certain condition on the second fundamental form of CR submanifolds of maximal CR dimension of complex hyperbolic space | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s10455-010-9215-3 | - |
dc.identifier.scopus | 2-s2.0-78649911067 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/78649911067 | - |
dc.contributor.affiliation | Geometry | en_US |
dc.relation.firstpage | 1 | en |
dc.relation.lastpage | 12 | en |
dc.relation.volume | 39 | en |
dc.relation.issue | 1 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Geometry | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
1
checked on Nov 11, 2024
Page view(s)
7
checked on Nov 15, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.