Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/852
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Đorić, Mirjana | en_US |
dc.contributor.author | Okumura, Masafumi | en_US |
dc.date.accessioned | 2022-08-15T17:57:37Z | - |
dc.date.available | 2022-08-15T17:57:37Z | - |
dc.date.issued | 2015-01-01 | - |
dc.identifier.issn | 0022247X | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/852 | - |
dc.description.abstract | We prove a classification theorem for a submanifold of real codimension two of a complex projective space, which is not its totally geodesic complex hypersurface, under the condition h(FX, Y)+h(X, FY) = 0, where h is the second fundamental form of the submanifold and F is the endomorphism induced from the almost complex structure J on the tangent bundle of the submanifold. | en |
dc.relation.ispartof | Journal of Mathematical Analysis and Applications | en |
dc.subject | Complex projective space | en |
dc.subject | Second fundamental form | en |
dc.subject | Structure induced from the almost complex structure | en |
dc.subject | Submanifold of real codimension two | en |
dc.title | Certain submanifolds of real codimension two of a complex projective space | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.jmaa.2015.04.004 | - |
dc.identifier.scopus | 2-s2.0-84933181433 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/84933181433 | - |
dc.contributor.affiliation | Geometry | en_US |
dc.relation.firstpage | 532 | en |
dc.relation.lastpage | 541 | en |
dc.relation.volume | 429 | en |
dc.relation.issue | 1 | en |
item.openairetype | Article | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Geometry | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
1
checked on Jun 11, 2025
Page view(s)
16
checked on Jan 19, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.