Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/852
DC FieldValueLanguage
dc.contributor.authorĐorić, Mirjanaen_US
dc.contributor.authorOkumura, Masafumien_US
dc.date.accessioned2022-08-15T17:57:37Z-
dc.date.available2022-08-15T17:57:37Z-
dc.date.issued2015-01-01-
dc.identifier.issn0022247Xen
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/852-
dc.description.abstractWe prove a classification theorem for a submanifold of real codimension two of a complex projective space, which is not its totally geodesic complex hypersurface, under the condition h(FX, Y)+h(X, FY) = 0, where h is the second fundamental form of the submanifold and F is the endomorphism induced from the almost complex structure J on the tangent bundle of the submanifold.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofJournal of Mathematical Analysis and Applicationsen_US
dc.subjectComplex projective spaceen_US
dc.subjectSecond fundamental formen_US
dc.subjectStructure induced from the almost complex structureen_US
dc.subjectSubmanifold of real codimension twoen_US
dc.titleCertain submanifolds of real codimension two of a complex projective spaceen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jmaa.2015.04.004-
dc.identifier.scopus2-s2.0-84933181433-
dc.identifier.isi000354230600029-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84933181433-
dc.contributor.affiliationGeometryen_US
dc.relation.issn0022-247Xen_US
dc.description.rankM21aen_US
dc.relation.firstpage532en_US
dc.relation.lastpage541en_US
dc.relation.volume429en_US
dc.relation.issue1en_US
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.deptGeometry-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

1
checked on Sep 27, 2025

Page view(s)

16
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.