Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/851
DC FieldValueLanguage
dc.contributor.authorĐorić, Mirjanaen_US
dc.contributor.authorOkumura, Masafumien_US
dc.date.accessioned2022-08-15T17:57:37Z-
dc.date.available2022-08-15T17:57:37Z-
dc.date.issued2006-01-01-
dc.identifier.issn0232704Xen
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/851-
dc.description.abstractWe treat m-dimensional real submanifolds M of complex space forms M̄ when the maximal holomorphic tangent subspace is (m-1)-dimensional. On these manifolds there exists an almost contact structure F which is naturally induced from the ambient space and in this paper we study the condition h(FX,Y)-h(X,FY) = g(FX,Y)η, ηε T⊥(M), on the structure F and on the second fundamental form h of these submanifolds. Especially when the ambient space M̄ is a complex Euclidean space, we obtain a complete classification of submanifolds M which satisfy these conditions. © Springer Science + Business Media B.V. 2006.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofAnnals of Global Analysis and Geometryen_US
dc.subjectAlmost contact metric structureen_US
dc.subjectComplex Euclidean spaceen_US
dc.subjectCR submanifolden_US
dc.subjectSecond fundamental formen_US
dc.titleCertain condition on the second fundamental form of CR submanifolds of maximal CR dimension of complex Euclidean spaceen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10455-006-9035-7-
dc.identifier.scopus2-s2.0-33748681899-
dc.identifier.isi000240520300003-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/33748681899-
dc.contributor.affiliationGeometryen_US
dc.relation.issn0232-704Xen_US
dc.description.rankM22en_US
dc.relation.firstpage383en_US
dc.relation.lastpage396en_US
dc.relation.volume30en_US
dc.relation.issue4en_US
item.openairetypeArticle-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
crisitem.author.deptGeometry-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

6
checked on Dec 2, 2025

Page view(s)

17
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.