Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/851
DC FieldValueLanguage
dc.contributor.authorĐorić, Mirjanaen_US
dc.contributor.authorOkumura, Masafumien_US
dc.date.accessioned2022-08-15T17:57:37Z-
dc.date.available2022-08-15T17:57:37Z-
dc.date.issued2006-01-01-
dc.identifier.issn0232704Xen
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/851-
dc.description.abstractWe treat m-dimensional real submanifolds M of complex space forms M̄ when the maximal holomorphic tangent subspace is (m-1)-dimensional. On these manifolds there exists an almost contact structure F which is naturally induced from the ambient space and in this paper we study the condition h(FX,Y)-h(X,FY) = g(FX,Y)η, ηε T⊥(M), on the structure F and on the second fundamental form h of these submanifolds. Especially when the ambient space M̄ is a complex Euclidean space, we obtain a complete classification of submanifolds M which satisfy these conditions. © Springer Science + Business Media B.V. 2006.en
dc.relation.ispartofAnnals of Global Analysis and Geometryen
dc.subjectAlmost contact metric structureen
dc.subjectComplex Euclidean spaceen
dc.subjectCR submanifolden
dc.subjectSecond fundamental formen
dc.titleCertain condition on the second fundamental form of CR submanifolds of maximal CR dimension of complex Euclidean spaceen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10455-006-9035-7-
dc.identifier.scopus2-s2.0-33748681899-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/33748681899-
dc.contributor.affiliationGeometryen_US
dc.relation.firstpage383en
dc.relation.lastpage396en
dc.relation.volume30en
dc.relation.issue4en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptGeometry-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

6
checked on Nov 11, 2024

Page view(s)

15
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.