Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/851
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Đorić, Mirjana | en_US |
dc.contributor.author | Okumura, Masafumi | en_US |
dc.date.accessioned | 2022-08-15T17:57:37Z | - |
dc.date.available | 2022-08-15T17:57:37Z | - |
dc.date.issued | 2006-01-01 | - |
dc.identifier.issn | 0232704X | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/851 | - |
dc.description.abstract | We treat m-dimensional real submanifolds M of complex space forms M̄ when the maximal holomorphic tangent subspace is (m-1)-dimensional. On these manifolds there exists an almost contact structure F which is naturally induced from the ambient space and in this paper we study the condition h(FX,Y)-h(X,FY) = g(FX,Y)η, ηε T⊥(M), on the structure F and on the second fundamental form h of these submanifolds. Especially when the ambient space M̄ is a complex Euclidean space, we obtain a complete classification of submanifolds M which satisfy these conditions. © Springer Science + Business Media B.V. 2006. | en |
dc.relation.ispartof | Annals of Global Analysis and Geometry | en |
dc.subject | Almost contact metric structure | en |
dc.subject | Complex Euclidean space | en |
dc.subject | CR submanifold | en |
dc.subject | Second fundamental form | en |
dc.title | Certain condition on the second fundamental form of CR submanifolds of maximal CR dimension of complex Euclidean space | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s10455-006-9035-7 | - |
dc.identifier.scopus | 2-s2.0-33748681899 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/33748681899 | - |
dc.contributor.affiliation | Geometry | en_US |
dc.relation.firstpage | 383 | en |
dc.relation.lastpage | 396 | en |
dc.relation.volume | 30 | en |
dc.relation.issue | 4 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Geometry | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
6
checked on Nov 11, 2024
Page view(s)
15
checked on Nov 15, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.