Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/806
DC FieldValueLanguage
dc.contributor.authorBaralić, Dordeen_US
dc.contributor.authorPrvulović, Branislaven_US
dc.contributor.authorStojanović, Gordanaen_US
dc.contributor.authorVrećica, Sinišaen_US
dc.contributor.authorŽivaljević, Radeen_US
dc.date.accessioned2022-08-15T15:57:07Z-
dc.date.available2022-08-15T15:57:07Z-
dc.date.issued2012-01-31-
dc.identifier.issn00029947en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/806-
dc.description.abstractFollowing Ghomi and Tabachnikov's 2008 work, we study the invariant N(M n) defined as the smallest dimension N such that there exists a totally skew embedding of a smooth manifold M n in ℝ N. This problem is naturally related to the question of estimating the geometric dimension of the stable normal bundle of the configuration space F 2(M n) of ordered pairs of distinct points in M n. We demonstrate that in a number of interesting cases the lower bounds on N(M n) obtained by this method are quite accurate and very close to the best known general upper bound N(M n) ≤ 4n+1 established by Ghomi and Tabachnikov. We also provide some evidence for the conjecture that for every n-dimensional, compact smooth manifold M n (n > 1). © 2011 American Mathematical Society.en
dc.relation.ispartofTransactions of the American Mathematical Societyen
dc.titleTopological obstructions to totally skew embeddingsen_US
dc.typeArticleen_US
dc.identifier.doi10.1090/S0002-9947-2011-05499-1-
dc.identifier.scopus2-s2.0-84856274340-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84856274340-
dc.contributor.affiliationTopologyen_US
dc.relation.firstpage2213en
dc.relation.lastpage2226en
dc.relation.volume364en
dc.relation.issue4en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

6
checked on Nov 8, 2024

Page view(s)

9
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.