Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/806
DC FieldValueLanguage
dc.contributor.authorBaralić, Dordeen_US
dc.contributor.authorPrvulović, Branislaven_US
dc.contributor.authorStojanović, Gordanaen_US
dc.contributor.authorVrećica, Sinišaen_US
dc.contributor.authorŽivaljević, Radeen_US
dc.date.accessioned2022-08-15T15:57:07Z-
dc.date.available2022-08-15T15:57:07Z-
dc.date.issued2012-01-31-
dc.identifier.issn00029947en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/806-
dc.description.abstractFollowing Ghomi and Tabachnikov's 2008 work, we study the invariant N(M n) defined as the smallest dimension N such that there exists a totally skew embedding of a smooth manifold M n in ℝ N. This problem is naturally related to the question of estimating the geometric dimension of the stable normal bundle of the configuration space F 2(M n) of ordered pairs of distinct points in M n. We demonstrate that in a number of interesting cases the lower bounds on N(M n) obtained by this method are quite accurate and very close to the best known general upper bound N(M n) ≤ 4n+1 established by Ghomi and Tabachnikov. We also provide some evidence for the conjecture that for every n-dimensional, compact smooth manifold M n (n > 1). © 2011 American Mathematical Society.en
dc.relation.ispartofTransactions of the American Mathematical Societyen
dc.titleTopological obstructions to totally skew embeddingsen_US
dc.typeArticleen_US
dc.identifier.doi10.1090/S0002-9947-2011-05499-1-
dc.identifier.scopus2-s2.0-84856274340-
dc.identifier.isi000301894000017-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84856274340-
dc.contributor.affiliationTopologyen_US
dc.description.rankM21en_US
dc.relation.firstpage2213en
dc.relation.lastpage2226en
dc.relation.volume364en
dc.relation.issue4en
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
crisitem.author.deptTopology-
crisitem.author.orcid0009-0003-3586-3658-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

6
checked on Mar 29, 2025

Page view(s)

10
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.