Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/79
DC FieldValueLanguage
dc.contributor.authorČvorović-Hajdinjak, Ivaen_US
dc.contributor.authorKovačević, Anđelkaen_US
dc.contributor.authorIlić, Draganaen_US
dc.contributor.authorPopović, Lukaen_US
dc.contributor.authorDai, Xinyuen_US
dc.contributor.authorJankov, Isidoraen_US
dc.contributor.authorRadović, Viktoren_US
dc.contributor.authorSánchez-Sáez, Paulaen_US
dc.contributor.authorNikutta, Roberten_US
dc.date.accessioned2022-08-06T15:18:32Z-
dc.date.available2022-08-06T15:18:32Z-
dc.date.issued2022-
dc.identifier.issn00046337en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/79-
dc.description.abstractThe consequences of complex disturbed environments in the vicinity of a supermassive black hole are not well represented by standard statistical models of optical variability in active galactic nuclei (AGN). Thus, developing new methodologies for investigating and modeling AGN light curves is crucial. Conditional Neural Processes (CNPs) are nonlinear function models that forecast stochastic time series based on a finite amount of known data without the use of any additional parameters or prior knowledge (kernels). We provide a CNP algorithm that is specifically designed for simulating AGN light curves. It was trained using data from the All-Sky Automated Survey for Supernovae, which included 153 AGN. We present CNP modeling performance for a subsample of five AGNs with distinctive difficult-to-model properties. The performance of CNP in predicting temporal flux fluctuation was assessed using a minimizing loss function, and the results demonstrated the algorithm's usefulness. Our preliminary parallelization experiments show that CNP can efficiently handle large amounts of data. These results imply that CNP can be more effective than standard tools in modeling large volumes of AGN data (as anticipated from time-domain surveys such as the Vera C. Rubin Observatory's Legacy Survey of Space and Time).en_US
dc.relation.ispartofAstronomische Nachrichtenen_US
dc.subjectaccretion disksen_US
dc.subjectgeneralen_US
dc.subjectmethodsen_US
dc.subjectquasarsen_US
dc.subjectstatisticalen_US
dc.titleConditional Neural Process for nonparametric modeling of active galactic nuclei light curvesen_US
dc.typeArticleen_US
dc.relation.publicationSpectral line shapes in Astrophysicsen_US
dc.identifier.doi10.1002/asna.20210103-
dc.identifier.scopus2-s2.0-85121604440-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85121604440-
dc.contributor.affiliationAstronomyen_US
dc.contributor.affiliationAstronomyen_US
dc.description.rankM23en_US
dc.relation.volume343en_US
dc.relation.issue1-2en_US
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptAstronomy-
crisitem.author.deptAstronomy-
crisitem.author.orcid0000-0001-5139-1978-
crisitem.author.orcid0000-0002-1134-4015-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

4
checked on Nov 7, 2024

Page view(s)

31
checked on Nov 14, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.