Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/781
DC FieldValueLanguage
dc.contributor.authorKoledin, Tamaraen_US
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2022-08-15T15:00:50Z-
dc.date.available2022-08-15T15:00:50Z-
dc.date.issued2013-10-22-
dc.identifier.issn14528630-
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/781-
dc.description.abstractWe consider regular graphs with small second largest eigenvalue (denoted by λ2). In particular, we determine all triangle-free regular graphs with λ2 ≤ √2, all bipartite regular graphs with λ2 ≤ √3, and all bipartite regular graphs of degree 3 with λ2 ≤ 2.en_US
dc.relation.ispartofApplicable Analysis and Discrete Mathematicsen_US
dc.subjectBipartite graphsen_US
dc.subjectBounded eigenvaluesen_US
dc.subjectGraph spectrumen_US
dc.subjectRegular graphsen_US
dc.subjectTriangle-free graphsen_US
dc.titleRegular graphs with small second largest eigenvalueen_US
dc.typeArticleen_US
dc.identifier.doi10.2298/AADM130710013K-
dc.identifier.scopus2-s2.0-84885771896-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84885771896-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.firstpage235en_US
dc.relation.lastpage249en_US
dc.relation.volume7en_US
dc.relation.issue2en_US
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

8
checked on Nov 8, 2024

Page view(s)

10
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.