Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/778
DC FieldValueLanguage
dc.contributor.authorKoledin, Tamaraen_US
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2022-08-15T15:00:17Z-
dc.date.available2022-08-15T15:00:17Z-
dc.date.issued2017-11-02-
dc.identifier.issn03081087en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/778-
dc.description.abstractIn this paper we focus on connected signed graphs of fixed number of vertices, positive edges and negative edges that maximize the largest eigenvalue (also called the index) of their adjacency matrix. In the first step we determine these signed graphs in the set of signed generalized theta graphs. Concerning the general case, we use the eigenvector techniques for getting some structural properties of resulting signed graphs. In particular, we prove that positive edges induce nested split subgraphs, while negative edges induce double nested signed subgraphs. We observe that our concept can be applied when considering balancedness of signed graphs (the property that is extensively studied in both mathematical and non-mathematical context).en
dc.relation.ispartofLinear and Multilinear Algebraen
dc.subjectadjacency matrixen
dc.subjectlargest eigenvalueen
dc.subjectnested graphen
dc.subjectSigned graphen
dc.subjectsmall perturbationsen
dc.titleConnected signed graphs of fixed order, size, and number of negative edges with maximal indexen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/03081087.2016.1265480-
dc.identifier.scopus2-s2.0-85001037979-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85001037979-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.firstpage2187en
dc.relation.lastpage2198en
dc.relation.volume65en
dc.relation.issue11en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

19
checked on Nov 15, 2024

Page view(s)

12
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.