Please use this identifier to cite or link to this item:
https://research.matf.bg.ac.rs/handle/123456789/776
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Koledin, Tamara | en_US |
dc.contributor.author | Stanić, Zoran | en_US |
dc.date.accessioned | 2022-08-15T15:00:17Z | - |
dc.date.available | 2022-08-15T15:00:17Z | - |
dc.date.issued | 2014-02-01 | - |
dc.identifier.issn | 00243795 | en |
dc.identifier.uri | https://research.matf.bg.ac.rs/handle/123456789/776 | - |
dc.description.abstract | A graph is called reflexive if its second largest eigenvalue does not exceed 2. In this paper, we determine all reflexive bipartite regular graphs. Any bipartite regular graph of degree at most 2 is reflexive as well as its bipartite complement. Apart from them, there is a finite number of resulting graphs. © 2013 Elsevier Inc. All rights reserved. | en |
dc.relation.ispartof | Linear Algebra and Its Applications | en |
dc.subject | Adjacency matrix | en |
dc.subject | Bipartite regular graphs | en |
dc.subject | Block designs | en |
dc.subject | Bounded eigenvalues | en |
dc.title | Reflexive bipartite regular graphs | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.laa.2013.07.020 | - |
dc.identifier.scopus | 2-s2.0-84890441579 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/84890441579 | - |
dc.contributor.affiliation | Numerical Mathematics and Optimization | en_US |
dc.relation.firstpage | 145 | en |
dc.relation.lastpage | 155 | en |
dc.relation.volume | 442 | en |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Numerical Mathematics and Optimization | - |
crisitem.author.orcid | 0000-0002-4949-4203 | - |
Appears in Collections: | Research outputs |
SCOPUSTM
Citations
9
checked on Nov 8, 2024
Page view(s)
12
checked on Nov 15, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.