Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/776
DC FieldValueLanguage
dc.contributor.authorKoledin, Tamaraen_US
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2022-08-15T15:00:17Z-
dc.date.available2022-08-15T15:00:17Z-
dc.date.issued2014-02-01-
dc.identifier.issn00243795en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/776-
dc.description.abstractA graph is called reflexive if its second largest eigenvalue does not exceed 2. In this paper, we determine all reflexive bipartite regular graphs. Any bipartite regular graph of degree at most 2 is reflexive as well as its bipartite complement. Apart from them, there is a finite number of resulting graphs. © 2013 Elsevier Inc. All rights reserved.en
dc.relation.ispartofLinear Algebra and Its Applicationsen
dc.subjectAdjacency matrixen
dc.subjectBipartite regular graphsen
dc.subjectBlock designsen
dc.subjectBounded eigenvaluesen
dc.titleReflexive bipartite regular graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.laa.2013.07.020-
dc.identifier.scopus2-s2.0-84890441579-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84890441579-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.firstpage145en
dc.relation.lastpage155en
dc.relation.volume442en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

9
checked on Nov 8, 2024

Page view(s)

12
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.