Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/771
DC FieldValueLanguage
dc.contributor.authorAndelić, Milicaen_US
dc.contributor.authorDa Fonseca, C. M.en_US
dc.contributor.authorKoledin, Tamaraen_US
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2022-08-15T15:00:16Z-
dc.date.available2022-08-15T15:00:16Z-
dc.date.issued2013-01-01-
dc.identifier.issn18553966en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/771-
dc.description.abstractThe Q-index of a simple graph is the largest eigenvalue of its signless Laplacian. As for the adjacency spectrum, we will show that in the set of connected bipartite graphs with fixed order and size, the bipartite graphs with maximal Q-index are the double nested graphs. We provide a sequence of (in)equalities regarding the principal eigenvector of the signless Laplacian of double nested graphs and apply these results to obtain some lower and upper bounds for their Q-index. In the end, we give some computational results in order to compare these bounds. Copyright © 2013 DMFA Slovenije.en
dc.publisherKoper : University of Primorskaen_US
dc.relation.ispartofArs Mathematica Contemporaneaen_US
dc.subjectDouble nested graphen
dc.subjectLargest eigenvalueen
dc.subjectSignless Laplacianen
dc.subjectSpectral inequalitiesen
dc.titleSharp spectral inequalities for connected bipartite graphs with maximal Q-indexen_US
dc.typeArticleen_US
dc.identifier.doi10.26493/1855-3974.271.85e-
dc.identifier.scopus2-s2.0-84863977101-
dc.identifier.isi000305553000014-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84863977101-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.issn1855-3966en_US
dc.description.rankM22en_US
dc.relation.firstpage171en_US
dc.relation.lastpage185en_US
dc.relation.volume6en_US
dc.relation.issue1en_US
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

11
checked on Mar 28, 2025

Page view(s)

8
checked on Jan 19, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.