Please use this identifier to cite or link to this item: https://research.matf.bg.ac.rs/handle/123456789/770
DC FieldValueLanguage
dc.contributor.authorJovanović, Irenaen_US
dc.contributor.authorStanić, Zoranen_US
dc.date.accessioned2022-08-15T15:00:16Z-
dc.date.available2022-08-15T15:00:16Z-
dc.date.issued2012-03-01-
dc.identifier.issn00243795en
dc.identifier.urihttps://research.matf.bg.ac.rs/handle/123456789/770-
dc.description.abstractLet λ1(G)≥ λ2(G) ≥⋯≥ λn(G) be the adjacency spectrum of a graph G on n vertices. The spectral distance σ( G1, G2) between n vertex graphs G1 and G2 is defined by σ( G1, G2)=∑i=1n| λi( G1)- λi( G2)|. Here we provide some initial results regarding this quantity. First, we give some general results concerning the spectral distances between arbitrary graphs, and compute these distances in some particular cases. Certain relation with the theory of graph energy is identified. The spectral distances bounded by a given constant are also considered. Next, we introduce the cospectrality measure and the spectral diameter, and obtain specific results indicating their relevance for the theory of cospectral graphs. Finally, we give and discuss some computational results and conclude the paper by a list of conjectures. © 2011 Elsevier Inc. All rights reserved.en
dc.relation.ispartofLinear Algebra and Its Applicationsen
dc.subjectAdjacency matrixen
dc.subjectCospectrality measureen
dc.subjectGraph energyen
dc.subjectSpectral diameteren
dc.subjectSpectral distanceen
dc.titleSpectral distances of graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.laa.2011.08.019-
dc.identifier.scopus2-s2.0-84855899237-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84855899237-
dc.contributor.affiliationNumerical Mathematics and Optimizationen_US
dc.relation.firstpage1425en
dc.relation.lastpage1435en
dc.relation.volume436en
dc.relation.issue5en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.deptNumerical Mathematics and Optimization-
crisitem.author.orcid0000-0002-4949-4203-
Appears in Collections:Research outputs
Show simple item record

SCOPUSTM   
Citations

40
checked on Nov 8, 2024

Page view(s)

8
checked on Nov 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.